![Astronomy](https://www.bartleby.com/isbn_cover_images/9781938168284/9781938168284_largeCoverImage.gif)
Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 44E
If the Sun were replaced by a white dwarf with a surface temperature of 10,000 K and a radius equal to Earth’s, how would its luminosity compare to that of the Sun?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Part a-D pl
The figure (Figure 1) shows representations of six
thermodynamic states of the same ideal gas sample.
Figure
1 of 1
Part A
■Review | Constants
Rank the states on the basis of the pressure of the gas sample at each state.
Rank pressure from highest to lowest. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
highest
0
☐ ☐ ☐ ☐ ☐ ☐
Reset
Help
B
F
A
D
E
The correct ranking cannot be determined.
Submit
Previous Answers
× Incorrect; Try Again; 4 attempts remaining
Provide Feedback
lowest
Next >
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Chapter 23 Solutions
Astronomy
Ch. 23 - How does a white dwarf differ from a neutron star?...Ch. 23 - Describe the evolution of a star with a mass like...Ch. 23 - Describe the evolution of a massive star (say, 20...Ch. 23 - How do the two types of supernovae discussed in...Ch. 23 - A star begins its life with a mass of 5 MSunbut...Ch. 23 - If the formation of a neutron star leads to a...Ch. 23 - How can the Crab Nebula shine with the energy of...Ch. 23 - How is a nova different from a type Ia supernova?...Ch. 23 - Apart from the masses, how are binary systems with...Ch. 23 - What observations from SN 1987A helped confirm...
Ch. 23 - Describe the evolution of a white dwarf over time,...Ch. 23 - Describe the evolution of a pulsar over time, in...Ch. 23 - How would a white dwarf that formed from a star...Ch. 23 - What do astronomers think are the causes of...Ch. 23 - How did astronomers finally solve the mystery of...Ch. 23 - Arrange the following stars in order of their...Ch. 23 - Would you expect to find any white dwarfs in the...Ch. 23 - Suppose no stars more massive than about 2 MSunhad...Ch. 23 - Would you be more likely to observe a type II...Ch. 23 - Astronomers believe there are something like 100...Ch. 23 - Would you expect to observe every supernova in our...Ch. 23 - The Large Magellanic Cloud has about one-tenth the...Ch. 23 - Look at the list of the nearest stars in Appendix...Ch. 23 - If most stars become white dwarfs at the ends of...Ch. 23 - If a 3 and 8 MSunstar formed together in a binary...Ch. 23 - You have discovered two star clusters. The first...Ch. 23 - A supernova remnant was recently discovered and...Ch. 23 - Based upon the evolution of stars, place the...Ch. 23 - What observations or types of telescopes would you...Ch. 23 - How would the spectra of a type II supernova be...Ch. 23 - The ring around SN 1987A (Figure 23.12) initially...Ch. 23 - What is the acceleration of gravity (g) at the...Ch. 23 - What is the escape velocity from the Sun? How much...Ch. 23 - What is the average density of the Sun? How does...Ch. 23 - Say that a particular white dwarf has the mass of...Ch. 23 - What is the escape velocity from the white dwarf...Ch. 23 - What is the average density of the white dwarf in...Ch. 23 - Now take a neutron star that has twice the mass of...Ch. 23 - What is the escape velocity from the neutron star...Ch. 23 - What is the average density of the neutron star in...Ch. 23 - One way to calculate the radius of a star is to...Ch. 23 - According to a model described in the text, a...Ch. 23 - Do the same calculations as in Exercise 23.42 but...Ch. 23 - If the Sun were replaced by a white dwarf with a...Ch. 23 - A supernova can eject material at a velocity of...Ch. 23 - A supernova remnant was observed in 2007 to be...Ch. 23 - The ring around SN 1987A (Figure 23.12) started...Ch. 23 - Before the star that became SN 1987A exploded, it...Ch. 23 - What is the radius of the progenitor star that...Ch. 23 - What is the acceleration of gravity at the surface...Ch. 23 - What was the escape velocity from the surface of...Ch. 23 - What was the average density of the star that...Ch. 23 - If the pulsar shown in Figure 23.16 is rotating...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
When you rub your cold hands together, the friction between them results in heat that warms your hands. Why doe...
Anatomy & Physiology (6th Edition)
Sketch the following spectra that would be obtained for 2-chloroethanol: a. The 1H NMR spectrum for an anhydrou...
Organic Chemistry (8th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
20.29 A sample offield mice contains individuals that are, that are , and that are.
What are the frequencies o...
Genetic Analysis: An Integrated Approach (3rd Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Starter the rule of significantarrow_forwardPlease solve this problem and give step by step explanations on each step while breaking it down please. Thank you!!arrow_forwardPlease solve this problem and give step by step explanations on each step while breaking it down please. Thank you!!arrow_forward
- No chatgpt plsarrow_forwardNo chatgpt plsarrow_forwardCar A starts from rest at t = 0 and travels along a straight road with a constant acceleration of 6 ft/s^2 until it reaches a speed of 60ft/s. Afterwards it maintains the speed. Also, when t = 0, car B located 6000 ft down the road is traveling towards A at a constant speed of 80 ft/s. Determine the distance traveled by Car A when they pass each other.Write the solution using pen and draw the graph if needed.arrow_forward
- In the given circuit the charge on the plates of 1 μF capacitor, when 100 V battery is connected to the terminals A and B, will be 2 μF A 1 µF B 3 µFarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
- The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed. NOT AI PLSarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168284/9781938168284_smallCoverImage.gif)
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399920/9781337399920_smallCoverImage.gif)
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399944/9781337399944_smallCoverImage.gif)
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305120785/9781305120785_smallCoverImage.gif)
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning