College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 72PE
Verify that alter a time of 10.0 ms, the current for the situation considered in Example 23.9 will be 0.183 A as stated.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A toaster using a Nichrome heating element operates on 120 V. When it is switched on at 24∘С, the heating element carries an initial current of 1.38 A. A few seconds later the current reaches the steady value of 1.23 A.
What physical process is launched with the switching on of the toaster? Why does the current decrease from its initial value and reach another steady value? Choose the best answer from below.
A. When switched on, heating element of the toaster acts as a parallel connection of a resistor and an inductor. This connection reacts to any change of the current with a delay. As the result, current initially increases to a greater value and then reaches the saturated value.
B. When switched on, heating element of the toaster acts as a resistor and converts electrical energy into thermal. However, there are imperfections in the circuit that lead to a loss of energy. As the result, amount of the current that is transformed to thermal energy decreases.
C. When…
A 2.00-nF capacitor with an initial charge of 4.44 µC is discharged through a 1.75-kn resistor.
(a) Calculate the current in the resistor 9.00 us after the resistor is connected across the terminals of the capacitor. (Let the positive direction of the current be define
such that de > 0.)
dt
96.95
This is the correct magnitude of the current mA
(b) What charge remains on the capacitor after 8.00 µs?
(c) What is the (magnitude of the) maximum current in the resistor?
A
Lightning strikes can involve currents as high as 25,000 A that last for about 40 ms. If a person is struck by a bolt of lightning with these properties, the current will pass through his body. We shall assume that his mass is 75 kg, that he is wet (after all, he is in a rainstorm) and therefore has a resistance of 1.0 kΩ, and that his body is all water (which is reasonable for a rough, but plausible, approximation). (a) By how many degrees Celsius would this lightning bolt increase the temperature of 75 kg of water? (b) Given that the internal body temperature is about 37oC, would the person’s temperature actually increase that much? Why not? What would happen first?
Chapter 23 Solutions
College Physics
Ch. 23 - How do the multiple-loop coils and iron ring in...Ch. 23 - When a magnet is thrust into a coil as in Figure...Ch. 23 - Explain how magnetic flux can be zero when the...Ch. 23 - Is an emf induced in the coil in Figure 23.54 when...Ch. 23 - A person who works with large magnets sometimes...Ch. 23 - A particle accelerator sends highvelocity charged...Ch. 23 - Why must pan of the circuit be moving relative to...Ch. 23 - A powerful induction cannon can be made by placing...Ch. 23 - An induction slave heats a pot with a coil...Ch. 23 - Explain how you could thaw out a frozen water pipe...
Ch. 23 - Explain why magnetic damping might not be...Ch. 23 - Explain how electromagnetic induction can be used...Ch. 23 - Using RHR-l, show that the emfs in the sides of...Ch. 23 - The source of a generator’s electrical energy...Ch. 23 - Suppose you find that the belt drive connecting a...Ch. 23 - Explain what causes physical vibrations in...Ch. 23 - Does plastic insulation on live/hot wires prevent...Ch. 23 - Why are ordinary circuit breakers and fuses...Ch. 23 - A GFI may trip just because the live/hot and...Ch. 23 - How would you place two identical flat coils in...Ch. 23 - How would you shape a given length of wire to give...Ch. 23 - €22. Verify, as was concluded without proof in...Ch. 23 - Presbycusis is a hearing loss due to age that...Ch. 23 - Would you use a large inductance or a large...Ch. 23 - High-frequency noise in AC power can damage...Ch. 23 - Does inductance depend on current, frequency, or...Ch. 23 - Explain why the capacitor in Figure 23.55(a) acts...Ch. 23 - If the capacitors in Figure 23.55 are replaced by...Ch. 23 - Does the resonant frequency of an AC circuit...Ch. 23 - Suppose you have a motor with a power factor...Ch. 23 - What is the value of the magnetic flux at coil 2...Ch. 23 - What is the value of the magnetic flux through the...Ch. 23 - Referring to Figure 23.5?(a), what is the...Ch. 23 - Referring to Figure 23.57(b), what is the...Ch. 23 - Referring to Figure 23.58, what are the directions...Ch. 23 - Repeat the previous problem with the battery...Ch. 23 - Verify that the units /t are volts. That is, show...Ch. 23 - Suppose a 50-turn coil lies in the plane of the...Ch. 23 - (a) An MRI technician moves his hand from a region...Ch. 23 - Integrated Concepts Referring to the situation in...Ch. 23 - An emf is induced by rotating a 1000-turn, 20.0 cm...Ch. 23 - A 0.250 m radius, 500-turn coil is rotated...Ch. 23 - Integrated Concepts Approximately how does the emf...Ch. 23 - Integrated Concepts A lightning bolt produces a...Ch. 23 - Use Faraday’s law, Lenz’s law, and RHR—l to show...Ch. 23 - If a current flows in the Satellite Tether shown...Ch. 23 - (a) A jet airplane with a 75.0 m wingspan is...Ch. 23 - (a) A nonferrous screwdriver is being used in a...Ch. 23 - At what speed must the sliding rod in Figure 23.11...Ch. 23 - The 12.0 cm long rod in Figure 23.11 moves at 4.00...Ch. 23 - Prove that when B, l, and v are not mutually...Ch. 23 - In the August 1992 space shuttle flight, only 250...Ch. 23 - Integrated Concepts Derive an expression for the...Ch. 23 - Integrated Concepts The Tethered Satellite in...Ch. 23 - Integrated Concepts The Tethered Satellite...Ch. 23 - Make a drawing similar to Figure 23.14, but with...Ch. 23 - Figure 23.59 A coil is moved into and out of a...Ch. 23 - Calculate the peak voltage of a generator that...Ch. 23 - At what angular velocity in rpm will the peak...Ch. 23 - What is the peak emf generated by rotating a...Ch. 23 - What is the peak emf generated by a 0.250 m...Ch. 23 - (a) A bicycle generator rotates at 1875 rad/s,...Ch. 23 - Integrated Concepts This problem refers to the...Ch. 23 - (a) A car generator turns at 400 rpm when 1he...Ch. 23 - Show that if a coil rotates at an angular velocity...Ch. 23 - A 75-turn, 10.0 cm diameter coil rotates at an...Ch. 23 - (a) If the emf of a coil rotating in a magnetic...Ch. 23 - Unreasonable Results A 500-turn coil with a 0.250...Ch. 23 - Suppose a motor connected to a 120 V source draws...Ch. 23 - A motor operating on 240 V electricity has a 180 V...Ch. 23 - What is the back emf of a 120 V motor that draws...Ch. 23 - The motor in a toy car operates on 6.00 V....Ch. 23 - Integrated Concepts The motor in a toy car is...Ch. 23 - A plug—in transformer, like that in Figure 23.29,...Ch. 23 - An American traveler in New Zealand carries a...Ch. 23 - A cassette recorder uses a plug-in transformer to...Ch. 23 - (a) What is the voltage output of a transformer...Ch. 23 - (a) The plug-in transformer for a laptop computer...Ch. 23 - A multipurpose transformer has a secondary coil...Ch. 23 - A large power plant generates electricity at 12.0...Ch. 23 - If the power output in the previous problem is...Ch. 23 - Unreasonable Results The 335 kV AC electricity...Ch. 23 - Construct Your Own Problem Consider a double...Ch. 23 - Integrated Concepts A short circuit to the...Ch. 23 - Two coils are placed close together in a physics...Ch. 23 - If two coils placed next to one another have a...Ch. 23 - The 4.00 A current through a 7.50 mH inductor is...Ch. 23 - A device is turned on and 3.00 A flows through it...Ch. 23 - Starting with emf2=MI1t, show that the units of...Ch. 23 - Camera flashes charge a capacitor to high voltage...Ch. 23 - A large research solenoid has a self-inductance of...Ch. 23 - (a) Calculate the self-inductance of a 50.0 cm...Ch. 23 - A precision laboratory resistor is made of a coil...Ch. 23 - The healing coils in a hair dryer are 0.800 cm in...Ch. 23 - When the 20.0 A current through an inductor is...Ch. 23 - How fast can the 150 A current through a 0.250 H...Ch. 23 - Integrated Concepts A very large, superconducting...Ch. 23 - Unreasonable Results A 25.0 H inductor has 100 A...Ch. 23 - It you want a characteristic RL time constant of...Ch. 23 - Your RL circuit has a characteristic time constant...Ch. 23 - A large superconducting magnet, used for magnetic...Ch. 23 - Verify that alter a time of 10.0 ms, the current...Ch. 23 - Suppose you have a supply of inductors ranging...Ch. 23 - (a) What is the characteristic time constant of a...Ch. 23 - What percentage of the final current I0 flows...Ch. 23 - The 5.00 A current through a 1.50 H inductor is...Ch. 23 - (a) Use the exact exponential treatment to find...Ch. 23 - (a) Using the exact exponential treatment, find...Ch. 23 - At what frequency will a 30.0 mH inductor have a...Ch. 23 - What value of inductance should be used if a 20.0...Ch. 23 - What capacitance should be used to produce a 2.00...Ch. 23 - At what frequency will an 80.0 mF capacitor have a...Ch. 23 - (a) Find me current through a 0.500 H inductor...Ch. 23 - (a) What current flows when a 60.0 Hz, 480 V AC...Ch. 23 - A 20.0 kHz, 16.0 V source connected to an inductor...Ch. 23 - A 20.0 HZ, 16.0 V source produces a 2.00 mA...Ch. 23 - (a) An inductor designed to filter high-frequency...Ch. 23 - The capacitor in Figure 23.55(a) is designed to...Ch. 23 - The capacitor in Figure 23.55(b) will filler...Ch. 23 - Unreasonable Results In a recording of voltages...Ch. 23 - Construct Your Own Problem Consider the use of an...Ch. 23 - An RL circuit consists of a 40.0 (resistor and a...Ch. 23 - An RC circuit consists of a 40.0 (resistor and a...Ch. 23 - An LC circuit consists of a 3.00 mH inductor and a...Ch. 23 - What is the resonant frequency of a 0.500 mH...Ch. 23 - To receive AM radio, you want an RLC circuit that...Ch. 23 - Suppose you have a supply of inductors ranging...Ch. 23 - What capacitance do you need to produce a resonant...Ch. 23 - What inductance do you need to produce a resonant...Ch. 23 - The lowest frequency in the FM radio band is 88.0...Ch. 23 - An RLC series circuit has a 2.50 (resistor, a 100...Ch. 23 - An RLC series circuit hag a 1.00 k(register, a 150...Ch. 23 - An RLC series circuit has a 2.50 (resistor, a 100...Ch. 23 - An RLC series circuit has a 1.00 k(resistor, a...Ch. 23 - An RLC series circuit has a 200 (resistor and a...Ch. 23 - Referring to Example 23.14, find the average power...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (4th Edition)
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
22. A student has 65-cm-long arms. What is the minimum angular velocity (in rpm) for swinging a bucket of water...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
A block on a frictionless table is connected to a spring as shown. The spring is initially unstretched. The blo...
Tutorials in Introductory Physics
TEST YOUR UNDERSTANDING OF SECTION 24.1 A capacitor has vacuum in the space between the conductors. If you doub...
University Physics with Modern Physics (14th Edition)
4. When a smooth-flowing stream of water comes out of a faucet, it narrows as it falls. Why does it do this?
College Physics (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P18.37 shows a simplified model of a cardiac defibrillator, a device used to patients in ventricular fibrillation. When the switch S is toggled to the left, the capacitor C charges through the resistor R .When the switch is toggled to the right, the capacitor discharges current through the patients torso, modeled as the resistor Rtorso, allowing the hearts normal rhythm to be reestablished. (a) If the capacitor is initially uncharged with C = 8.00 F and = 1250 V, find the value of R required to charge the capacitor to a voltage of 775 V in 1.50 s. (b) If the capacitor is then discharged across the patients torso with, Rtorso = 1250 , calculate the voltage across the capacitor after 5.00 ms. Figure P18.37arrow_forwardA capacitor in a telephone circuit has a capacitance of 3μF. What current flows through it when 15V at 800Hz is impressed across it? answer should be in polar formarrow_forwardThe largest operating wind La generator in the world has a rotor diameter of almost 100m. This nits generator can deliver 3 3.1 MW of power. Suppose you connect adl 3.0 K resistor, a 4.0K resistor, and a 5.ok resistor in parallel- klhat potential difference must be applied across these resistors) in order to dissipate power w 1.00 percent of the Jock equal to power provided by the generator? Show all working step-by-step gat2 word stzarrow_forward
- The figure below shows a simplified model of a cardiac defibrillator, a device used to resuscitate patients in ventricular fibrillation. S R C Riorso + When the switch S is toggled to the left, the capacitor C charges through the resistor R. When the switch is toggled to the right, the capacitor discharges current through the patient's torso, modeled as the resistor Rrso, allowing the heart's normal rhythm to be reestablished. torsc HINT (a) If the capacitor is initially uncharged with C = 7.25 µF and E = 1260 V, find the value of R (in ohms) required to charge the capacitor to a voltage of 785 V in 1.20 s. Ω Rtorso (b) If the capacitor is then discharged across the patient's torso with R, 1260 0, calculate the voltage (in V) across the capacitor after 4.50 ms. Varrow_forwardWhen the switch S is toggled to the left, the capacitor C charges through the resistor R. When the switch is toggled to the right, the capacitor discharges current through the patient's torso, modeled as the resistor Rtorso, allowing the heart's normal rhythm to be reestablished. HINT (a) If the capacitor is initially uncharged with C = 8.50 µF and = 1260 V, find the value of R (in ohms) required to charge the capacitor to a voltage of 755 V in 1.30 s. Ω (b) If the capacitor is then discharged across the patient's torso with Rtorso = 1270 Ω, calculate the voltage (in V) across the capacitor after 4.50 ms. Varrow_forwardDetermine the current and its positive direction (left/right or up/down) that flows through each of the three resistors in the following circuit. ww ww 79 40 12V 9Varrow_forward
- In a parallel electrical circuit, the same current flows through each component, whereas the potential drop across each component can be different. Select one: O True O Falsearrow_forwardThe figure below shows a simplified model of a cardiac defibrillator, a device used to resuscitate patients in ventricular fibrillation. R HINT E S C When the switch S is toggled to the left, the capacitor C charges through the resistor R. When the switch is toggled to the right, the capacitor discharges current through the patient's torso, modeled as the resistor Rtorso, allowing the heart's normal rhythm to be reestablished. R torso V (a) If the capacitor is initially uncharged with C = 7.25 µF and E = 1220 V, find the value of R (in ohms) required to charge the capacitor to a voltage of 755 V in 1.60 s. Ω (b) If the capacitor is then discharged across the patient's torso with Rtorso = 1270 , calculate the voltage (in V) across the capacitor after 4.50 ms.arrow_forwardThe figure below shows a simplified model of a cardiac defibrillator, device used to resuscitate patients in ventricular fibrillation. S R C Rtorso + When the switch S is toggled to the left, the capacitor C charges through the resistor R. When the switch is toggled to the right, the capacitor discharges current through the patient's torso, modeled as the resistor Rorsor allowing the heart's normal rhythm to be reestablished. HINT (a) If the capacitor is initially uncharged with C = 7.25 µF and E = 1240 V, find the value of R (in ohms) required to charge the capacitor to a voltage of 765 V in 1.60 s. (b) If the capacitor is then discharged across the patient's torso with Rorso = 123o n, calculate the voltage (in V) across the capacitor after 7.00 ms. Varrow_forward
- For the cirouit shown in the figure, the switch Sis initisly open and the capacitor voltage is 78 V. The switch is then dlosed at time =0. Aher closing the switch, what is the time (in s) wil the current in the resistor be 5 22 uF 2.8 MO El- wwarrow_forwardThe figure below shows a simplified model of a cardiac defibrillator, a device used to resuscitate patients in ventricular fibrillation. S R Rorso + The capacitor C charge through the resistor R (when the switch S is toggled to left) and discharge current through the patient's torso which is of resistance (when the switch S is toggled to right). This phenomenon allows the heart's normal rhythm to be reestablished. (a) If the capacitor is initially uncharged with C = 7.0 µF; ɛ = 1240 V, find the value of R (in ohms) required to charge the capacitor to a voltage of 800 V in 2.1 s. (b) If the capacitor is then discharged across the patient's torso with Rtorso = 1200 Q, calculate the voltage (in V) across the capacitor after 4.0 ms.arrow_forwardA portion of a metal wire is shown below. When connected to a battery, an electric field is set-up which causes electrons to slowly drift with velocities (va) usually on the order of 10 5~ 10-4 m/s. In the set-up below the drift velocity of the electrons is to the right, then the directions of the electric field E and the conventional current are to the respectively AZE right and right right and left O left and left O left and right O both unknownarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY