Concept explainers
(a)
The electrostatic potential energy of the system when all of the charges are negative.
(a)
Answer to Problem 68P
The electrostatic potential energy of the system when all of the charges are negative is
Explanation of Solution
Given Data:
The charge on each particle is
The side of a square is
Formula used:
The expression for the work required to assemble the system of charges which is equal to the potential energy of the system is given as,
Calculation:
Figure (1)
The electrostatic potential energy of the system is calculated as,
Conclusion:
Therefore, the electrostatic potential energy of the system when all of the charges are negative is
(b)
The electrostatic potential energy of the system when three of the charges are positive and one of the charge is negative.
(b)
Answer to Problem 68P
The electrostatic potential energy of the system when three of the charges are positive and one of the charge is negative is zero.
Explanation of Solution
Given Data:
The charge on three particles is
The charge on fourth particle is
The side of a square is
Formula used:
The expression for the work required to assemble the system of charges which is equal to the potential energy of the system is given as,
Calculation:
The electrostatic potential energy of the system is calculated as,
Conclusion:
Therefore the electrostatic potential energy of the system when three of the charges are positive and one of the charge is negative is zero.
(c)
The electrostatic potential energy of the system when two adjacent corners are positive and other two are negative
(c)
Answer to Problem 68P
The electrostatic potential energy of the system when two adjacent corners are positive and other two are negative is
Explanation of Solution
Given Data:
The charge on first particle is
The charge on second particle is
The charge on third particle is
The charge on fourth particle is
The side of a square is
Formula used:
The expression for the work required to assemble the system of charges which is equal to the potential energy of the system is given as,
Calculation:
The electrostatic potential energy of the system is calculated as,
Conclusion:
Therefore the electrostatic potential energy of the system when two adjacent corners are positive and other two are negative is
(d)
The electrostatic potential energy of the system when the charges at two opposite corners are positive and other two are negative.
(d)
Answer to Problem 68P
The electrostatic potential energy of the system when the charges at two opposite corners are positive and other two are negative is
Explanation of Solution
Given Data:
The charge on first particle is
The charge on second particle is
The charge on third particle is
The charge on fourth particle is
The side of a square is
Formula used:
The expression for the work required to assemble the system of charges which is equal to the potential energy of the system is given as,
Calculation:
The electrostatic potential energy of the system is calculated as,
Conclusion:
Therefore, the electrostatic potential energy of the system when the charges at two opposite corners are positive and other two are negative is
Want to see more full solutions like this?
Chapter 23 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Please solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forward
- You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- No chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill