Concept explainers
a. An infinitely long sheet of charge of width L lies in the xy- plane between
b. Verify that your expression has the expected behavior if
c. Draw a graph of field strength E versus z.
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
- Two infinitely long, parallel lines of charge with linear charge densities 3.2 C/m and 3.2 C/m are separated by a distance of 0.50 m. What is the net electric field at points A, B, and C as shown in Figure P25.35? FIGURE P25.35arrow_forwardTwo positively charged spheres are shown in Figure P24.70. Sphere 1 has twice as much charge as sphere 2. If q = 6.55 nC, d = 0.250 m, and y = 1.25 m, what is the electric field at point A?arrow_forwardThe infinite sheets in Figure P25.47 are both positively charged. The sheet on the left has a uniform surface charge density of 48.0 C/m2, and the one on the right has a uniform surface charge density of 24.0 C/m2. a. What are the magnitude and direction of the net electric field at points A, B, and C? b. What is the force exerted on an electron placed at points A, B, and C? FIGURE P25.47arrow_forward
- A thin, semicircular wire of radius R is uniformly charged with total positive charge Q (Fig. P24.63). Determine the electric field at the midpoint O of the diameter.arrow_forwardA very long, thin wire fixed along the x axis has a linear charge density of 3.2 C/m. a. Determine the electric field at point P a distance of 0.50 m from the wire. b. If there is a test charge q0 = 12.0 C at point P, what is the magnitude of the net force on this charge? In which direction will the test charge accelerate?arrow_forwardA uniform electric field given by E=(2.655.35j)105N/C permeates a region of space in which a small negatively charged sphere of mass 1.30 g is suspended by a light cord (Fig. P24.53). The sphere is found to be in equilibrium when the string makes an angle = 23.0. a. What is the charge on the sphere? b. What is the magnitude of the tension in the cord? FIGURE P24.53arrow_forward
- A coaxial cable is formed by a long, straight wire and a hollow conducting cylinder with axes that coincide. The wire has charge per unit length = 20, and the hollow cylinder has net charge per unit length = 30. Use Gausss law to answer these questions: What are the charges per unit length on a. the inner surface and b. the outer surface of the hollow cylinder? c. What is the electric field a radial distance d from the axis of the coaxial cable?arrow_forwardA charge of q = 2.00 109 G is spread evenly on a thin metal disk of radius 0.200 m. (a) Calculate the charge density on the disk. (b) Find the magnitude of the electric field just above the center of the disk, neglecting edge effects and assuming a uniform distribution of charge.arrow_forwardA charged rod is curved so that it is part of a circle of radius R (Fig. P24.32). The excess positive charge Q is uniformly distributed on the rod. Find an expression for the electric field at point A in the plane of the curved rod in terms of the parameters given in the figure.arrow_forward
- Figure P24.51 shows four small charged spheres arranged at the corners of a square with side d = 25.0 cm. a. What is the electric field at the location of the sphere with charge +2.00 nC? b. What is the total electric force exerted on the sphere with charge +2.00 nC by the other three spheres? FIGURE P24.51arrow_forwardThree particles and three Gaussian surfaces are shown in Figure P25.24. All the surfaces are three-dimensional. Use the net electric flux through each surface indicated on the figure to find the charge of each particle. FIGURE P25.24arrow_forwardA solid sphere of radius R has a spherically symmetrical, nonuniform volume charge density given by (r) = A/r, where r is the radial distance from the center of the sphere in meters, and A is a constant such that the density has dimensions of M/L3. Sketch a graph of the magnitude of the electric field as a function of distance for 0 r 3R.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning