
Concept explainers
(a)
The expression for the current in the light bulb
(a)

Answer to Problem 56P
The expression for the current is
Explanation of Solution
Write the equation for the current in the bulb in term of the emf.
Here,
Here,
Conclusion:
Substitute equation (II) in equation (I).
Therefore, the expression for the current in the light bulb as a function of
(b)
The analysis model describing the moving bar
(b)

Answer to Problem 56P
The analysis model describing the moving when the bulb has maximum power is particle under equilibrium.
Explanation of Solution
Write the equation for the power of the light bulb.
Here,
From the above equation, both the force and the velocity of the moving have to be maximum for the power on the light bulb to be maximum. The condition of maximum power points to energy loss which could happen only for a particle in equilibrium.
Conclusion:
Therefore, the analysis model describing the moving when the bulb has maximum power is particle under equilibrium.
(c)
The speed of the bar
(c)

Answer to Problem 56P
The speed of the bar at maximum power is
Explanation of Solution
The magnetic flux points into the page thereby making the counterclockwise current to move out of the page. Write the equation for the magnetic force that the current is flowing upwards in the bar.
Here,
Conclusion:
Substitute
Therefore, the speed of the bar at maximum power is
(d)
The current in the bulb
(d)

Answer to Problem 56P
The current in the light bulb at maximum power is
Explanation of Solution
Substitute equation (V) in equation (III).
Conclusion:
Substitute
Therefore, the current in the light bulb at maximum power is
(e)
The maximum power delivered
(e)

Answer to Problem 56P
The maximum power delivered to the light bulb is
Explanation of Solution
Write the equation for the power in the light bulb.
Here,
Conclusion:
Substitute
Therefore, the maximum power delivered to the light bulb is
(f)
The maximum input power delivered
(f)

Answer to Problem 56P
The maximum input power delivered to the bar is
Explanation of Solution
Write the equation for the power delivered to the bar.
Here,
Conclusion:
Substitute
Therefore, the maximum input power delivered to the bar is
(g)
Whether the speed changes or not
(g)

Answer to Problem 56P
The speed changes when the resistance increases.
Explanation of Solution
Write the equation for the speed of the bar from equation (V).
Hence, the speed of the bar and the resistance are proportional to each other, given, all other quantities are kept constant.
Conclusion:
Therefore, the speed of the bar changes when the resistance increases.
(h)
Whether the speed increases or decreases
(h)

Answer to Problem 56P
The speed changes increases the resistance increases.
Explanation of Solution
Write the equation for the speed of the bar from equation (V).
Hence, the speed of the bar and the resistance are proportional to each other, given, all other quantities are kept constant.
Conclusion:
Therefore, the speed of the bar increases when the resistance increases.
(i)
Whether the power changes
(i)

Answer to Problem 56P
The power changes when the current increases
Explanation of Solution
An increase in current leads to a change in the mechanical load as the current as the current is analogous to mechanical load.
The mechanical power depends on the load. Therefore, the change in current will lead to change in the power.
Conclusion:
Therefore, the power changes when the current increases.
(j)
Whether the power is smaller or larger
(j)

Answer to Problem 56P
The power changes and becomes larger.
Explanation of Solution
According to ohm’s law, the current and resistance are inversely proportional to each other. If the current and resistance has to increase together, the load has to increase further.
The increase in the load will increase the power.
Conclusion:
Therefore, the power changes and becomes larger when the current and resistance increases.
Want to see more full solutions like this?
Chapter 23 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- pls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forwardpls help on allarrow_forward
- pls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forwardpls help on all asked questions kindlyarrow_forward
- pls help on all asked questions kindlyarrow_forward17. Two charges, one of charge +2.5 × 10-5 C and the other of charge +3.7 × 10-6 C, are 25.0 cm apart. The +2.5 × 10−5 C charge is to the left of the +3.7 × 10−6 C charge. a. Draw a diagram showing the point charges and label a point Y that is 20.0 cm to the left of the +3.7 × 10-6 C charge, on the line connecting the charges. (Field lines do not need to be drawn.) b. Calculate the net electric field at point Y.arrow_forward3arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





