
Concept explainers
(a)
The rate of deliver of energy
(a)

Answer to Problem 50P
The rate of deliver of energy is
Explanation of Solution
The rate of deliver of energy is the power of the battery. Write the equation for the power of the battery.
Here,
Conclusion:
Substitute
Therefore, the rate of deliver of energy by the battery is
(b)
The power delivered to the resistance of the coil
(b)

Answer to Problem 50P
The power delivered to the resistance of the coil is
Explanation of Solution
Write the equation for the power delivered to the resistance of the coil.
Here,
Write the equation for the voltage across the resistance.
Here,
Conclusion:
Substitute
Therefore, the power delivered to the resistance of the coil is
(c)
The rate of energy storage
(c)

Answer to Problem 50P
The rate of storage of energy is
Explanation of Solution
Consider the inductor being ideal and connect in series with an ideal resistor. According to Kirchhoff’s voltage rule, the algebraic sum of all the voltages in any closed loop in a circuit is zero.
Write the equation for the algebraic sum of the voltages across the coil.
Here,
The rate of storage of energy is the power. Write the equation for the power stored in the inductor.
Here,
Conclusion:
Rearrange equation (VI) and solve for
Substitute
Therefore, the rate of storage of energy in the magnetic field is
(d)
The relation between the three power values
(d)

Answer to Problem 50P
The power from the battery is the sum of the power across the internal resistance and the power in the magnetic field.
Explanation of Solution
From equation (II), the battery is delivering energy at a rate of
From equation (V), the power delivered to the resistance of the coil is
From equation (VIII), the rate of storage of energy in the magnetic field is
From the value of different powers given in equation (II), equation (V) and equation (VIII), it can be inferred that
Conclusion:
Therefore, the power delivered from the battery is the sum of the power delivered to the internal resistance and the power stored in the magnetic field.
(e)
The validity of the relation
(e)

Answer to Problem 50P
Yes, it is valid in other instants as well
Explanation of Solution
The relation between the powers is that the power from the battery is the sum of the power across the internal resistance and the power in the magnetic field.
At any instant, the power generated by the battery is the sum of the power delivered to the internal resistance and the power stored in the magnetic field.
Conclusion:
Therefore, it is true that the relation between the power is valid at any istant.
(f)
The relation between the power at given instants
(f)

Answer to Problem 50P
The power delivered to the resistance is zero at
Explanation of Solution
From equation (III) and equation (IV), write the equation for the power delivered to the resistance.
Here,
Write the equation for the power delivered by the magnetic field.
Here,
Conclusion:
Immediately after
After some time, the current does not change anymore and hence there is no power being stored in the magnetic field. All the power from the battery is delivered to the resistance of the coil.
Want to see more full solutions like this?
Chapter 23 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- RT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





