College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 4CQ
Construct ray diagrams to determine whether each of the following statement is true (T) or false (F). (a) For an object at a concave mirror’s center of curvature, the image is real and inverted. (b) As an object approaches the focal point of a concave mirror, the image size shrinks to zero. (c) For an object in front of a convex mirror, the image is always virtual and upright.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Construct ray diagrams to determine whether each of the fol-
lowing statements is true (T) or false (F). (a) For an object
at a concave mirror's center of curvature, the image is real
and inverted. (b) As an object approaches the focal point of
a concave mirror, the image size shrinks to zero. (c) For an
object in front of a convex mirror, the image is always virtual
and upright.
A student places a soda bottle in front of a curved mirror and discovers that the image of the bottle is upright and twice as big as the bottle itself. The student correctly concludes that the bottle must be located between
(A) the surface and the focal point of a convex mirror.
(B) the focal point and the optical center of a convex mirror.
(C) the surface and the focal point of a concave mirror.
(D) the focal point and the optical center of a concave mirror.
an object is placed 12 cm in front of a concave mirror whose focal length is 22cm. the object is 3.5 cm tall. Determine the location of the image, taking a real image as positive value and a virtual image as a negative value
Chapter 23 Solutions
College Physics:
Ch. 23.1 - In the overhead view if Figure 23.3, the image of...Ch. 23.3 - A person spearfishing from a boat sees a fish...Ch. 23.3 - True or False: (a) The image of an object placed...Ch. 23.5 - A clear plastic sandwich bag filled with water can...Ch. 23.5 - In Figure 23.25a, the blue object arrow is...Ch. 23.5 - An object is placed to the left of a converging...Ch. 23 - Tape a picture of yourself on a bathroom mirror....Ch. 23 - Prob. 2CQCh. 23 - The top row of Figure CQ23.3 shows three ray...Ch. 23 - Construct ray diagrams to determine whether each...
Ch. 23 - Construct ray diagrams to determine whether each...Ch. 23 - Prob. 6CQCh. 23 - Suppose you want to use a converging lens to...Ch. 23 - Lenses used in eyeglasses, whether converging or...Ch. 23 - In a Jules Verne novel, a piece of ice is shaped...Ch. 23 - If a cylinder of solid glass or clear plastic is...Ch. 23 - Prob. 11CQCh. 23 - Prob. 12CQCh. 23 - Why does the focal length of a mirror not depend...Ch. 23 - A person spear fishing from a boat sees a...Ch. 23 - An object represented by a gray arrow, is placed...Ch. 23 - (a) Does your bathroom mirror show you older or...Ch. 23 - Suppose you stand in front of a flat mirror and...Ch. 23 - Prob. 3PCh. 23 - In a church choir loft, two parallel walls are...Ch. 23 - A periscope (Fig. P23.5) is useful for viewing...Ch. 23 - A dentist uses a mirror to examine a tooth that is...Ch. 23 - A convex spherical mirror, whose focal length has...Ch. 23 - To fit a contact lens to a patient's eye, a...Ch. 23 - A virtual image is formed 20.0 cm from a concave...Ch. 23 - While looking at her image in a cosmetic minor,...Ch. 23 - Prob. 11PCh. 23 - A dedicated sports car enthusiast polishes the...Ch. 23 - A concave makeup mirror it designed to that a...Ch. 23 - A 1.80-m-tall person stands 9.00 m in front of a...Ch. 23 - A man standing 1.52 m in front of a shaving mirror...Ch. 23 - Prob. 16PCh. 23 - At an intersection of hospital hallways, a convex...Ch. 23 - The mirror of a solar cooker focuses the Suns rays...Ch. 23 - A spherical mirror is to be used to form an image,...Ch. 23 - Prob. 20PCh. 23 - A cubical block of ice 50.0 cm on an edge is...Ch. 23 - A goldfish is swimming inside a spherical bowl of...Ch. 23 - A paperweight is made of a solid hemisphere with...Ch. 23 - The top of a swimming pool is at ground level. If...Ch. 23 - A transparent sphere of unknown composition is...Ch. 23 - A man inside a spherical diving bell watches a...Ch. 23 - A jellyfish is floating in a water-filled aquarium...Ch. 23 - Figure P23.28 shows a curved surface separating a...Ch. 23 - A contact lens is made of plastic with an index of...Ch. 23 - A thin plastic lens with index of refraction n =...Ch. 23 - A converging lens has a local length of 10.0 cm....Ch. 23 - Prob. 32PCh. 23 - A diverging lens has a focal length of magnitude...Ch. 23 - A diverging lens has a focal length of 20.0 cm....Ch. 23 - Prob. 35PCh. 23 - The nickels image in Figure P23.36 has twice the...Ch. 23 - An object of height 8.00 cm it placed 25.0 cm to...Ch. 23 - An object is located 20.0 cm to the left of a...Ch. 23 - A converging lens is placed 30.0 cm to the right...Ch. 23 - (a) Use the thin-lens equation to derive an...Ch. 23 - Two converging lenses, each of focal length 15.0...Ch. 23 - A converging lens is placed at x = 0, a distance d...Ch. 23 - A 1.00-cm-high object is placed 4.00 cm to the...Ch. 23 - Two converging lenses having focal length of f1 =...Ch. 23 - Lens L1 in figure P23.45 has a focal length of...Ch. 23 - An object is placed 15.0 cm from a first...Ch. 23 - Prob. 47APCh. 23 - Prob. 48APCh. 23 - Prob. 49APCh. 23 - Prob. 50APCh. 23 - The lens and the mirror in figure P23.51 are...Ch. 23 - The object in Figure P23.52 is mid-way between the...Ch. 23 - Prob. 53APCh. 23 - Two rays travelling parallel to the principal axis...Ch. 23 - To work this problem, use the fact that the image...Ch. 23 - Consider two thin lenses, one of focal length f1...Ch. 23 - An object 2.00 cm high is placed 10.0 cm to the...Ch. 23 - Prob. 58APCh. 23 - Figure P23.59 shows a converging lens with radii...Ch. 23 - Prob. 60APCh. 23 - The lens-makers equation for a lens with index n1...Ch. 23 - An observer to the right of the mirror-lens...Ch. 23 - The lens-markers equation applies to a lens...Ch. 23 - Prob. 64APCh. 23 - A glass sphere (n = 1.50) with a radius of 15.0 cm...Ch. 23 - An object 10.0 cm tall is placed at the zero mark...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (i) When an image of an object is formed by a plane mirror, which of the following statements is always true? More than one statement may be correct. (a) The image is virtual. (b) The image is real. (c) The image is upright. (d) The image is inverted. (e) None of those statements is always true. (ii) When the image of an object is formed by a concave mirror, which of the preceding statements are always true? (iii) When the image of an object is formed by a convex mirror, which of the preceding statements are always true?arrow_forwardAn object of height 3 cm is placed at a distance of 25 cm in front of a converging lens of focal length 20 cm, to be referred to as the first lens. Behind the lens there is another converging lens of focal length 20 cm placed 10 cm from the first lens. There is a concave mirror of focal length 15 cm placed 50 cm from the second lens. Find the location, orientation, and size of the final image.arrow_forwardUse a ruler and a protractor to draw rays to find images in the following cases. (a) A point object located on the axis of a concave minor located at a point within the focal length from the vertex. (b) A point object located on the axis of a concave mirror located at a point farther than the focal length from the vertex. (c) A point object located on the axis of a convex mirror located at a point within the focal length from the vertex. (d) A point object located on the axis of a convex mirror located at a point farther than the focal length from the vertex. (e) Repeat (a)—(d) for a point object off the axis.arrow_forward
- A 1.80-m-tall person stands 9.00 m in front of a large, concave spherical mirror having a radius of curvature of 3.00 m. Determine (a) the mirrors focal length, (b) the image distance, and (c) the magnification. (d) Is the image real or virtual? (e) Is the image upright or inverted?arrow_forwardA floating strawberry illusion is achieved with two parabolic mirrors, each having a focal length 7.50 cm, facing each other as shown in Figure P33.58. If a strawberry is placed on the lower mirror, an image of the strawberry is formed at the small opening at the center of the top mirror, 7.50 cm above the lowest point of the bottom mirror. The position of the eye in Figure P35.58a corresponds to the view of the apparatus in Figure P35.58b. Consider the light path marked A. Notice that this light path is blocked by the upper mirror so that the strawberry itself is not directly observable. The light path marked B corresponds to the eye viewing the image of the strawberry that is formed at the opening at the top of the apparatus. (a) Show that the final image is formed at that location and describe its characteristics. (b) A very startling effect is to shine a flashlight beam on this image. Even al a glancing angle, the incoming light beam is seemingly reflected from the image! Explain. Figure P35.58arrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forward
- Under what circumstances will an image be located at the focal point of a spherical lens or mirror?arrow_forwardWhy is the following situation impossible? Consider the lensmirror combination shown in Figure P35.55. The lens has a focal length of fL = 0.200 m, and the mirror has a focal length of fM = 0.500 m. The lens and mirror are placed a distance d = 1.30 m apart, and an object is placed at p = 0.300 m from the lens. By moving a screen to various positions to the left of the lens, a student finds two different positions of the screen that produce a sharp image of the object. One of these positions corresponds to light leaving the object and traveling to the left through the lens. The other position corresponds to light traveling to the right from the object, reflecting from the mirror and then passing through the lens. Figure P35.55 Problem 55 and 57.arrow_forwardConsider the lensmirror arrangement shown in Figure P35.55. There are two final image positions to the left of the lens of focal length fL. One image position is due to light traveling from the object to the left and passing through the lens. The other image position is due to light traveling to the right from the object, reflecting from the mirror of focal length fM and then passing through the lens. For a given object position p between the lens and the mirror and measured with respect to the lens, there are two separation distances d between the lens and mirror that will cause the two images described above to be at the same location. Find both positions.arrow_forward
- An observer to the right of the mirror-lens combination shown in Figure P36.89 (not to scale) sees two real images that are the same size and in the same location. One image is upright, and the other is inverted. Both images are 1.50 times larger than the object. The lens has a focal length of 10.0 cm. The lens and mirror are separated by 40.0 cm. Determine the focal length of the mirror.arrow_forward(i) When an image of an object is formed by a converging lens, which of the following statements is always true? More than one statement may be correct. (a) The image is virtual. (b) The image is real. (c) The image is upright. (d) The image is inverted. (e) None of those statements is always true. (ii) When the image of an object is formed by a diverging lens, which of the statements is always true?arrow_forwardAn object is placed 25.0 cm from the surface of a convex mirror and an image is formed. The same object is placed 20.0 cm in front of a plane mirror and. again, an image is formed. Suppose in each ease the object is located at x = 0 and the mirrors lie along the positive x axis. If the images formed in the two mirrors lie at the same x coordinate, determine the radius of curvature of the convex mirror.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY