Predict/Calculate A circular coil with a diameter of 22.0 cm and 155 turns rotates about a vertical axis with an angular speed of 1250 rpm. The only magnetic field in this system is that of the Earth. At the location of the coil, the horizontal component of the magnetic field is 3.80 × 10−5 T, and the vertical component is 2.85×105T. (a) Which component of the magnetic field is important when calculating the induced emf in this coil? Explain. (b) Find the maximum emf induced in the coil.
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Microbiology: An Introduction
Human Biology: Concepts and Current Issues (8th Edition)
Introductory Chemistry (6th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- A small, circular washer of radius a = 0.500 cm is held directly below a long, straight wire carrying a current of I = 10.0 A. The washer is located h = 0.500 m above the top of a table (Fig. P31.69). Assume the magnetic Held is nearly constant over the area of the washer and equal to the magnetic field at the center of the washer. (a) If the washer is dropped from rest, what is the magnitude of the average induced emf in the washer over the time interval between its release and the moment it hits the tabletop? (b) What is the direction of the induced current in the washer?arrow_forwardA time-dependent uniform magnetic field of magnitude B(t) is confined in a cylindrical region of radius R. A conducting rod of length 2D is placed in the region, as shown below. Show that the emf between the ends of the rod is given by dBdtDR2D2 . ( Hint: To find the between the ends, we need to integrate the electric field from one end to the other. To find the electric field, use Faraday’s law as “Ampere’s law for E”.)arrow_forwardA rectangular loop has dimensions 0.500 m by 0.300 m. The loop is hinged along the x-axis and lies in the xy-plane (Fig. P19.42). A uniform magnetic field of 1.50 T is directed at an angle of 40.0 with respect to the positive y-axis and lies parallel everywhere to the yz-plane. The loop carries a current of 0.900 A in the direction shown. (Ignore gravitation.) (a) In what direction is magnetic force exerted on wire segment ab? What is the direction of the magnetic torque associated with this force, as computed with respect to the x-axis? (b) What is the direction of the magnetic force exerted on segment cd? What is the direction of the magnetic torque associated with this force, again computed with respect to the x-axis? (c) Can the forces examined in parts (a) and (b) combine to cause the loop to rotate around the x-axis? Can they affect the motion of the loop in any way? Explain. (d) What is the direction (in the yz-plane) of the magnetic force exerted on segment bc? Measuring torques with respect to the x-axis, what is the direction of the torque exerted by the force on segment bc? (e) Looking toward the origin along the positive x-axis. Will the loop rotate clockwise or counterclockwise? (f) Compute the magnitude of the magnetic moment of the loop. (g) What is the angle between the magnetic moment vector and the magnetic field? (h) Compute the torque on the loop using the values found for the magnetic moment and magnetic field. Figure P19.42arrow_forward
- Review. Figure P31.31 shows a bar of mass m that can slide without friction on a pair of rails separated by a distance and located on an inclined plane that makes an angle with respect to the ground. The resistance of the resistor is R. and a uniform magnetic field of magnitude H is directed downward, perpendicular to the ground, over the entire region through which the bar moves. With what constant speed v does the bar slide along the rails?arrow_forwardA generator connected to the wheel or hub of a bicycle can be used to power lights or small electronic devices. A typical bicycle generator supplies 6.00 V when the wheels rotate at = 20.0 rad/s. (a) If the generator's magnetic field has magnitude B = 0.600 T with N = 100 turns, find the loop area A. (b) Find the time interval between the maximum emf of +6.00 V and the minimum emf of 6.00 V.arrow_forwardIn a 250-turn automobile alternator, the magnetic flux in each turn is B, = 2.50 104 cos t, where is in webers, is the angular speed of the alternator, and t is in seconds. The alternator is geared to rotate three times for each engine revolution. When the engine is running at an angular speed of 1.00 103 rev/min, determine (a) the induced emf in the alternator as a function of time and (b) the maximum emf in the alternator.arrow_forward
- A square, flat loop of wire is pulled at constant velocity through a region of uniform magnetic field directed perpendicular to the plane of the loop as shown in Figure OQ31.5. Which of the following statements are correct? More than one statement may be correct. (a) Current is induced in the loop in the clockwise direction. (b) Current is induced in the loop in the counterclockwise direction. (c) No current is induced in the loop. (d) Charge separation occurs in the loop, with the top edge positive. (e) Charge separation occurs in the loop, with the top edge negative. Figure OQ31.5arrow_forwardA rectangular coil with resistance R has N turns, each of length and width as shown in Figure P31.36. The coil moves into a uniform magnetic field B with constant velocity v. What are the magnitude and direction of the total magnetic force on the coil (a) as it enters the magnetic field, (b) as it moves within the field, and (c) as it leaves the field?arrow_forwardA flat, circular loop has 20 turns. The radius of the loop is 10.0 cm and the current through the wire is 0.50 A. Determine the magnitude of the magnetic field at the center of the loop.arrow_forward
- Two frictionless conducting rails separated by l = 55.0 cm are connected through a 2.00- resistor, and the circuit is completed by a bar that is free to slide on the rails (Fig. P32.71). A uniform magnetic field of 5.00 T directed out of the page permeates the region, a. What is the magnitude of the force Fp that must be applied so that the bar moves with a constant speed of 1.25 m/s to the right? b. What is the rate at which energy is dissipated through the 2.00- resistor in the circuit?arrow_forwardA bar magnet is held in a vertical orientation above a loop of wire that lies in the horizontal plane as shown in Figure OQ31.7. The south end of the magnet is toward the loop. After the magnet is dropped, what is true of the induced current in the loop as viewed from above? (a) It is clockwise as the magnet falls toward the loop. (b) It is counterclockwise as the magnet falls toward the loop. (c) It is clockwise after the magnet has moved through the loop and moves away from it. (d) It is always clockwise. (e) It is first counterclockwise as the magnet approaches the loop and then clockwise after it has passed through the loop.arrow_forwardA circular coil of five turns and a diameter of 30.0 cm is oriented in a vertical plane with its axis perpendicular to the horizontal component of the Earths magnetic field. A horizontal compass placed at the coils center is made to deflect 45.0 from magnetic north by a current of 0.600 A in the coil. (a) What is the horizontal component of the Earths magnetic field? (b) The current in the coil is switched off. A dip needle is a magnetic compass mounted so that it can rotate in a vertical north-south plane. At this location, a dip needle makes an angle of 13.0s from the vertical. What is the total magnitude of the Earths magnetic field at this location?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning