Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 28PCE
Suppose we change the situation shown in Figure 23-38 as follows: Instead of allowing the loop to fall on its own, we attach a string to it and lower it with constant speed along the path indicated by the dashed line. Is the tension in the string greater than: less than, or equal to the weight of the loop? Give specific answers for times when (a) the loop is above the magnet and (b) the loop is below the magnet Explain in each case.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Can children be used to generate electricity? Consider turning a swing into an electric
generator by building it out of conducting material such that it forms a conducting loop, as
shown in the schematic diagram below.
L
w
The swing rotates around the line 1-4; the swinging motion is described by the time
evolution of the angle between the swing and the vertical direction,
o) = A sin(cor).
For simplicity, we place the swing right on top of the magnetic North Pole, so that the
magnetic field, which has magnitude B, points straight upwards.
In your answers, enter o as "theta" and m as "omega" (without the quotation marks).
You must indicate multiplication with an asterisk (). For example, A sin(ont) is
entered as "A*sin(omega*t)".
Derive an expression for the magnetic flux through the conducting loop as a function of
time.
Hence derive an expression for the voltage between points a and bas a function of time.
Vas =
N
Q:13)
a)
E
Figure 4
In Figure 4 above a negatively charged particle of mass m and charge q=-7.5 x 10° C
performs a circular motion horizontally in a clockwise direction. This motion is
performed in a region with uniform magnetic field. Both magnetic fields and electric
fields
point downwards and have the strengths of B=0.45 T and E=150 NC
respectively.
Draw a free body diagram to show all forces acting on the charged particle.
Calculate the period of revolution.
Suppose that the electric field is removed, compare both situations.
Chapter 23 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 23.1 - Which of the following situations results in an...Ch. 23.2 - What is the angle in the definition of magnetic...Ch. 23.3 - In system 1 the magnetic flux through a coil with...Ch. 23.4 - A metal ring moves to the right from a field-free...Ch. 23.5 - Suppose the speed of the rod in Example 23-8 is...Ch. 23.6 - Consider the electric generator shown in Figure...Ch. 23.7 - Prob. 7EYUCh. 23.8 - Consider the circuit shown in Figure 23-25. (a) Is...Ch. 23.9 - Is more energy stored in an inductor by doubling...Ch. 23.10 - If a transformer doubled both the voltage and the...
Ch. 23 - Explain the difference between a magnetic field...Ch. 23 - A metal ring with a break in its perimeter is...Ch. 23 - Many equal-arm balances have a small metal plate...Ch. 23 - Figure 23-29 shows a vertical iron rod with a wire...Ch. 23 - A metal rod of resistance R can slide without...Ch. 23 - Recently, NASA tested a power generation system...Ch. 23 - Explain what happens when the angular speed of the...Ch. 23 - A 0 085-T magnetic field passes through a circular...Ch. 23 - A uniform magnetic field of 0.0250 T points...Ch. 23 - A magnetic field is oriented at an angle of 67 to...Ch. 23 - MRI Solenoid The magnetic field produced by an MRI...Ch. 23 - Find the magnitude of the magnetic flux through...Ch. 23 - At a certain location, the Earths magnetic field...Ch. 23 - A solenoid with 385 turns per meter and a diameter...Ch. 23 - A single-turn square loop of side L is centered on...Ch. 23 - A bar magnet is inside a closed cubical box...Ch. 23 - A 0.65-T magnetic field is perpendicular to a...Ch. 23 - Prob. 11PCECh. 23 - Figure 23-33 shows the magnetic flux through a...Ch. 23 - One type of antenna for receiving AM radio signals...Ch. 23 - A wire loop is placed in a magnetic field that is...Ch. 23 - Figure 23-35 shows four different situations in...Ch. 23 - Predict/Calculate The magnetic flux through a...Ch. 23 - Prob. 17PCECh. 23 - A single conducting loop of wire has an area of...Ch. 23 - The area of a 120-turn coil oriented with its...Ch. 23 - An emf is induced in a conducting loop of wire...Ch. 23 - A magnetic field increases from 0 to 0.55 T in 16...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain Figure 23-37 shows two metal disks...Ch. 23 - Predict/Explain (a) As the solid metal disk in...Ch. 23 - A bar magnet with its north pole pointing downward...Ch. 23 - A Wire Loop and a Magnet A loop of wire is dropped...Ch. 23 - Suppose we change the situation shown in Figure...Ch. 23 - Figure 23-39 shows a current-carrying wire and a...Ch. 23 - Consider the physical system shown in Figure...Ch. 23 - Prob. 31PCECh. 23 - Prob. 32PCECh. 23 - Prob. 33PCECh. 23 - A conducting rod slides on two wires in a region...Ch. 23 - A metal rod 0.95 m long moves with a speed of 2.4...Ch. 23 - Airplane emf A Boeing KC-135A airplane has a...Ch. 23 - Predict/Calculate Figure 23-42 shows a...Ch. 23 - Referring to part (a) of Problem 37, (a) find the...Ch. 23 - (a) Find the current that flows in the circuit...Ch. 23 - Suppose the mechanical power delivered to the rod...Ch. 23 - Prob. 41PCECh. 23 - A rectangular coil 25 cm by 45 cm has 150 turns....Ch. 23 - A 1 6-m wire is wound into a coil with a radius of...Ch. 23 - Shake Flashlight A shake flashlight uses the...Ch. 23 - Predict/Calculate A circular coil with a diameter...Ch. 23 - A generator is designed to produce a maximum emf...Ch. 23 - Prob. 47PCECh. 23 - Prob. 48PCECh. 23 - Prob. 49PCECh. 23 - Prob. 50PCECh. 23 - Prob. 51PCECh. 23 - Prob. 52PCECh. 23 - Prob. 53PCECh. 23 - A simple RL circuit includes a 0.125-H inductor....Ch. 23 - Prob. 55PCECh. 23 - Prob. 56PCECh. 23 - Prob. 57PCECh. 23 - Prob. 58PCECh. 23 - Prob. 59PCECh. 23 - Prob. 60PCECh. 23 - Prob. 61PCECh. 23 - Alcator Fusion Experiment In the Alcator fusion...Ch. 23 - Superconductor Energy Storage An engineer proposes...Ch. 23 - Prob. 64PCECh. 23 - Prob. 65PCECh. 23 - Prob. 66PCECh. 23 - Transformer 1 has a primary voltage Vp and a...Ch. 23 - The electric motor in a toy train requires a...Ch. 23 - Predict/Calculate A disk drive plugged into a...Ch. 23 - A transformer with a turns ratio...Ch. 23 - A neon sign that requires a voltage of 11,000 V is...Ch. 23 - A step-down transformer produces a voltage of 6.0...Ch. 23 - A step-up transformer has 30 turns on the primary...Ch. 23 - CE Predict/Explain An airplane flies level to the...Ch. 23 - CE You hold a circular loop of wire at the north...Ch. 23 - Prob. 76GPCh. 23 - Interstellar Magnetic Field The Voyager I...Ch. 23 - Prob. 78GPCh. 23 - BIO Electrognathography Computerized jaw tracking,...Ch. 23 - A rectangular loop of wire 24 cm by 72 cm is bent...Ch. 23 - Consider a rectangular loop of wire 6.8 cm by 9.2...Ch. 23 - Predict/Calculate A car with a vertical radio...Ch. 23 - The rectangular coils in a 355-tum generator are...Ch. 23 - A cubical box 22 cm on a side is placed in a...Ch. 23 - BIO MRI Scanner An MRI scanner is based on a...Ch. 23 - BIO Transcranial Magnetic Stimulation Transcranial...Ch. 23 - A magnetic field with the time dependence shown in...Ch. 23 - Prob. 88GPCh. 23 - Prob. 89GPCh. 23 - Prob. 90GPCh. 23 - BIO Blowfly Maneuvers Suppose the fly described in...Ch. 23 - Prob. 92GPCh. 23 - Predict/Calculate A single-turn rectangular loop...Ch. 23 - Prob. 94GPCh. 23 - Prob. 95GPCh. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - A car drives onto a loop detector and increases...Ch. 23 - A truck drives onto a loop detector and increases...Ch. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Example 23-8 (a) What external force...Ch. 23 - Predict/Calculate Referring to Example 23-8...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Identify each of the following reproductive barriers as prezygotic or postzygotic a. One lilac species lives on...
Campbell Essential Biology (7th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A 200Turn circular loop of radius 50.0 cm is vertical, with its axis on an east-west line. A current of 100 A circulates clockwise in the loop when viewed from the east. The Earth’s field here is due norm, parallel to me ground, with a strength of 3.00105T. What are 1he direction and magnitude of the torque on the loop? (b) Does this device have any practical applications as a motor?arrow_forwardMagnetic field inside a torus. Consider a torus of rectangular cross-section with inner radius a and outer radius b. N turns of an insulated thin wire are wound evenly on the toms tightly all around the torus arid connected to a battery producing a steady current f in the wire. Assume that the current on the top and bottom surfaces in the figure is radial, and the current on the inner and outer radii surfaces is vertical. Find the magnetic field inside the toms as a function of radial distance r from the axis.arrow_forwardA thin, nonconducting disk of radius R is free to rotate around the axis that passes through its center and is perpendicular to the face of the disk. The disk is charged uniformly with a total charge q. If the disk rotates at a constant angular velocity , what is tire magnetic field at its center?arrow_forward
- You wish to move a rectangular loop of wire into a region of uniform magnetic field at a given speed so as to induce an emf in the loop. The plane of the loop must remain perpendicular to the magnetic field lines. In which orientation should you hold the loop while you move it into the region of magnetic field so as to generate the largest emf? (a) with the long dimension of the loop parallel to the velocity vector (b) with the short dimension of the loop parallel to the velocity vector (c) either way because the emf is the same regardless of orientationarrow_forward(a) A cosmic ray proton moving toward the Earth at 5.00107m/s experiences a magnetic force of 1.701016N. What is the strength of the magnetic field it there is a 45° angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.arrow_forwardThe accompanying figure shows a current loop consisting of two concentric circular arcs and two perpendicular radial lines. Determine the magnetic field at point P.arrow_forward
- A circular loop of wire is held in a uniform magnetic field, with the plane of the loop perpendicular to the field lines. Which of the following will not cause a current to be induced in the loop? (a) crushing the loop (b) rotating the loop about an axis perpendicular to the field lines (c) keeping the orientation of the loop fixed and moving it along the field lines (d) pulling the loop out of the fieldarrow_forwardDetermine the magnetic field on the central axis at the opening of a semi-infinite solenoid. (That is, take the opening to be at x = 0 and the other end to be at x= .)arrow_forwardA wire ismade into a circular shape of radius R and pivoted along a central support.The two ends of the sire are touching a banish that is connected to a &power source. The stricture is between the poles of a magnet such that we can assume there is a uniform magnetic field on the wire. In terms of a coordinate system with origin at the center ofthe ring, magneticfieldisBx=B0,By=Bz= 0. and the ring rotates about the z-axis. Find the torque on the ring siren it is not in the xz-plane.arrow_forward
- Consider the wires described in Problem 63. Find the magnetic force per unit length exerted on wire B.arrow_forwardConsider a solenoid that is very long compared with its radius. Of the following choices, what is the most effective way to increase the magnetic field in the interior of the solenoid? (a) double its length, keeping the number of turns per unit length constant (b) reduce its radius by half, keeping the number of turns per unit length constant (c) overwrap the entire solenoid with an additional layer of current-carrying wirearrow_forwardA solenoid is 40 cm long, has a diameter of 3.0 cm, and is wound with 500 turns. If the current through the windings is 4.0 A, what is the magnetic field at a point on the axis of the solenoid that is (a) at the center of the solenoid, (b) 10.0 cm from one end of the solenoid, and (c) 5.0 cm from one end of the solenoid? (d) Compare these answers with the infinite-solenoid case.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY