Linear Algebra and Its Applications, Books a la Carte Edition Plus MyLab Math with Pearson eText -- Access Code Card (5th Edition)
5th Edition
ISBN: 9780321989925
Author: David C. Lay, Steven R. Lay, Judi J. McDonald
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2.3, Problem 35E
Let T : ℝn → ℝn be an invertible linear transformation. Explain why T is both one-to-one and onto ℝn. Use equations (1) and (2). Then give a second explanation using one or more theorems.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Use the graphs to find estimates for the solutions of the simultaneous equations.
21:46 MM
:
0 % sparxmaths.uk/studer
Sparx Maths
+
13
24,963 XP Andrey Roura
1A ✓
1B X
1C
1D
Summary
Bookwork code: 1B
歐
Calculator
not allowed
Write the ratio 3
: 1½ in its simplest form.
32
Menu
Use the graph to solve 3x2-3x-8=0
Chapter 2 Solutions
Linear Algebra and Its Applications, Books a la Carte Edition Plus MyLab Math with Pearson eText -- Access Code Card (5th Edition)
Ch. 2.1 - Since vectors in n may be regarded as n 1...Ch. 2.1 - Let A be a 4 4 matrix and let x be a vector in 4....Ch. 2.1 - Suppose A is an m n matrix, all of whose rows are...Ch. 2.1 - In Exercises 1 and 2, compute each matrix sum or...Ch. 2.1 - In Exercises 1 and 2, compute each matrix sum or...Ch. 2.1 - In the rest of this exercise set and in those to...Ch. 2.1 - Compute A 5I3 and (5I3)A, when A=[913876418].Ch. 2.1 - In Exercises 5 and 6, compute die product AB in...Ch. 2.1 - In Exercises 5 and 6, compute die product AB in...Ch. 2.1 - If a matrix A is 5 3 and the product AB is 5 7,...
Ch. 2.1 - How many rows does B have if BC is a 3 4 matrix?Ch. 2.1 - Let A=[2531] and B=[453k]. What value(s) of k, if...Ch. 2.1 - Let A=[2346], B=[8455], and C=[5231]. Verify that...Ch. 2.1 - Let A=[111123145] and D=[200030005]. Compute AD...Ch. 2.1 - Let A=[3612]. Construct a 2 2 matrix B such that...Ch. 2.1 - Let r1,..., rp be vectors in n, and let Q be an m ...Ch. 2.1 - Let U be the 3 2 cost matrix described in Example...Ch. 2.1 - Exercises 15 and 16 concern arbitrary matrices A,...Ch. 2.1 - a. If A and B are 3 3 and B = [b1 b2 b3], then AB...Ch. 2.1 - If A=[1225] and AB=[121693], determine the first...Ch. 2.1 - Suppose the first two columns, b1 and b2, of B are...Ch. 2.1 - Suppose die third column of B is die sum of die...Ch. 2.1 - Suppose the second column of B is all zeros. What...Ch. 2.1 - Suppose the last column of AB is entirely zero but...Ch. 2.1 - Show that if the columns of B are linearly...Ch. 2.1 - Suppose CA = In (the n n identity matrix). Show...Ch. 2.1 - Suppose AD = Im (the m m identity matrix). Show...Ch. 2.1 - Suppose A is an m n matrix and there exist n m...Ch. 2.1 - Suppose A is a 3 n matrix whose columns span 3....Ch. 2.1 - In Exercises 27 and 28, view vectors in n as n 1...Ch. 2.1 - If u and v are in n. how are uTv and vTu related?...Ch. 2.1 - Prove Theorem 2(b) and 2(c). Use the row-column...Ch. 2.1 - Prove Theorem 2(d). [Hint: The (i, j)-entry in...Ch. 2.1 - Show that ImA = A when A is an m n matrix. You...Ch. 2.1 - Show that AIn = A when A is an m n matrix. [Hint:...Ch. 2.1 - Prove Theorem 3(d). [Hint: Consider the jth row of...Ch. 2.1 - Give a formula for (A Bx)T, where x is a vector...Ch. 2.2 - Use determinants to determine which of the...Ch. 2.2 - Find the inverse of the matrix A = [121156545], if...Ch. 2.2 - If A is an invertible matrix, prove that 5A is an...Ch. 2.2 - Find the inverses of the matrices in Exercises 14....Ch. 2.2 - Find the inverses of the matrices in Exercises 14....Ch. 2.2 - Find the inverses of the matrices in Exercises 14....Ch. 2.2 - Find the inverses of the matrices in Exercises 14....Ch. 2.2 - Use the inverse found in Exercise 1 to solve the...Ch. 2.2 - Use the inverse found in Exercise 3 to solve the...Ch. 2.2 - Let A = [12512], b1 = [13], b2 = [15], b3 = [26],...Ch. 2.2 - Use matrix algebra to show that if A is invertible...Ch. 2.2 - In Exercises 9 and 10, mark each statement True or...Ch. 2.2 - a. A product of invertible n n matrices is...Ch. 2.2 - Let A be an invertible n n matrix, and let B be...Ch. 2.2 - Let A be an invertible n n matrix, and let B be...Ch. 2.2 - Suppose AB = AC. where B and C are n p matrices...Ch. 2.2 - Suppose (B C) D = 0, where B and C are m n...Ch. 2.2 - Suppose A, B, and C are invertible n n matrices....Ch. 2.2 - Suppose A and B are n n, B is invertible, and AB...Ch. 2.2 - Solve the equation AB = BC for A, assuming that A,...Ch. 2.2 - Suppose P is invertible and A = PBP1 Solve for B...Ch. 2.2 - If A, B, and C are n n invertible matrices, does...Ch. 2.2 - Suppose A, B, and X are n n matrices with A, X,...Ch. 2.2 - Explain why the columns of an n n; matrix A are...Ch. 2.2 - Explain why the columns of an n n matrix A span n...Ch. 2.2 - Suppose A is n n and die equation Ax = 0 has only...Ch. 2.2 - Suppose A is n n and the equation Ax = b has a...Ch. 2.2 - Exercises 25 and 26 prove Theorem 4 for A =...Ch. 2.2 - Exercises 25 and 26 prove Theorem 4 for A =...Ch. 2.2 - Exercises 27 and 28 prove special cases of the...Ch. 2.2 - Show that if row 3 of A is replaced by row3(A) 4 ...Ch. 2.2 - Find the inverses of the matrices in Exercises...Ch. 2.2 - Find die inverses of the matrices in Exercises...Ch. 2.2 - Find die inverses of the matrices in Exercises...Ch. 2.2 - Find die inverses of the matrices in Exercises...Ch. 2.2 - Use the algorithm from this section to find the...Ch. 2.2 - Repeat the strategy of Exercise 33 to guess the...Ch. 2.2 - Let A = [279256134]. Find the third column of A1...Ch. 2.2 - [M] Let A = [2592754618053715450149]. Find the...Ch. 2.2 - Let A = [121315]. Constuct a 2 3 matrix C (by...Ch. 2.2 - Let A = [11100111]. Construct a 4 2 matrix D...Ch. 2.2 - Let D = [.005.002.001.002.004.002.001.002.005] be...Ch. 2.3 - Determine if A = [234234234] is invertible.Ch. 2.3 - Suppose that for a certain n n matrix A,...Ch. 2.3 - Suppose that A and B are n n matrices and the...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - Unless otherwise specified, assume that all...Ch. 2.3 - In Exercises 11 and 12, the matrices are all n n....Ch. 2.3 - In Exercises 11 and 12, the matrices are all n n....Ch. 2.3 - An m n upper triangular matrix is one whose...Ch. 2.3 - An m n lower triangular matrix is one whose...Ch. 2.3 - Can a square matrix with two identical columns be...Ch. 2.3 - Is it possible for a 5 5 matrix to be invertible...Ch. 2.3 - If A is invertible, then the columns of A1 are...Ch. 2.3 - If C is 6 6 and the equation Cx = v is consistent...Ch. 2.3 - If the columns of a 7 7 matrix D are linearly...Ch. 2.3 - If n n matrices E and F have the property that EF...Ch. 2.3 - If the equation Gx = y has more than one solution...Ch. 2.3 - If the equation Hx = c is inconsistent for some c...Ch. 2.3 - If an n n matrix K cannot be row reduced to In....Ch. 2.3 - If L is n n and the equation Lx = 0 has the...Ch. 2.3 - Verify the boxed statement preceding Example 1.Ch. 2.3 - Explain why the columns of A2 span n whenever the...Ch. 2.3 - Show that if AB is invertible, so is A. You cannot...Ch. 2.3 - Show that if AB is invertible, so is B.Ch. 2.3 - If A is an n n matrix and the equation Ax = b has...Ch. 2.3 - If A is an n n matrix and the transformation x ...Ch. 2.3 - Suppose A is an n n matrix with the property that...Ch. 2.3 - Suppose A is an n n matrix with the property that...Ch. 2.3 - In Exercises 33 and 34, T is a linear...Ch. 2.3 - In Exercises 33 and 34, T is a linear...Ch. 2.3 - Let T : n n be an invertible linear...Ch. 2.3 - Let T be a linear transformation that maps n onto...Ch. 2.3 - Suppose T and U are linear transformations from n...Ch. 2.3 - Suppose a linear transformation T : n n has the...Ch. 2.3 - Let T : n n be an invertible linear...Ch. 2.3 - Suppose T and S satisfy the invertibility...Ch. 2.4 - Show that[I0AI] is invertible and find its...Ch. 2.4 - Compute XTX, where X is partitioned as [X1 X2].Ch. 2.4 - In Exercises 19, assume that the matrices are...Ch. 2.4 - In Exercises 19, assume that the matrices are...Ch. 2.4 - In Exercises 19, assume that the matrices are...Ch. 2.4 - In Exercises 19, assume that the matrices are...Ch. 2.4 - In Exercises 58, find formulas for X, Y, and Z in...Ch. 2.4 - In Exercises 58, find formulas for X, Y, and Z in...Ch. 2.4 - In Exercises 58, find formulas for X, Y, and Z in...Ch. 2.4 - In Exercises 58, find formulas for X, Y, and Z in...Ch. 2.4 - Suppose A11 is an invertible matrix. Find matrices...Ch. 2.4 - The inverse of [I00CI0ABI] is [I00ZI0XYI]. Find X,...Ch. 2.4 - In Exercises 11 and 12, mark each statement True...Ch. 2.4 - In Exercises 11 and 12, mark each statement True...Ch. 2.4 - Let A=[B00C], where B and C are square. Show A is...Ch. 2.4 - Show that the block upper triangular matrix A in...Ch. 2.4 - Suppose A11 is invertible. Find X and Y such that...Ch. 2.4 - Suppose the block matrix A on the left side of (7)...Ch. 2.4 - When a deep space probe is launched, corrections...Ch. 2.4 - Let X be an m n data matrix such that XT X is...Ch. 2.4 - In the study of engineering control of physical...Ch. 2.4 - Suppose the transfer function W(S) in Exercise 19...Ch. 2.4 - a. Verify that A2 = I when A=[1031]. b. Use...Ch. 2.4 - Generalize the idea of Exercise 21(a) [not 21(b)]...Ch. 2.4 - Use partitioned matrices to prove by induction...Ch. 2.4 - Use partitioned matrices to prove by induction mat...Ch. 2.4 - Without using row reduction, find the inverse of...Ch. 2.5 - Find an LU factorization of...Ch. 2.5 - In Exercises 16, solve the equation Ax = b by...Ch. 2.5 - In Exercises 16, solve the equation Ax = b by...Ch. 2.5 - In Exercises 16, solve the equation Ax = b by...Ch. 2.5 - In Exercises 16, solve the equation Ax = b by...Ch. 2.5 - In Exercises 16, solve the equation Ax = b by...Ch. 2.5 - In Exercises 16, solve the equation Ax = b by...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - Find an LU factorization of the matrices in...Ch. 2.5 - When A is invertible, MATLAB finds A1 by factoring...Ch. 2.5 - Find A1 as in Exercise 17, using A from Exercise...Ch. 2.5 - Let A be a lower triangular n n matrix with...Ch. 2.5 - Let A = LU be an LU factorization. Explain why A...Ch. 2.5 - Suppose A = BC, where B is invertible. Show that...Ch. 2.5 - (Reduced LU Factorization) With A as in the...Ch. 2.5 - (Rank Factorization) Suppose an m n matrix A...Ch. 2.5 - (QR Factorization) Suppose A = QR, where Q and R...Ch. 2.5 - (Singular Value Decomposition) Suppose A = UDVT,...Ch. 2.5 - (Spectral Factorization) Suppose a 3 3 matrix A...Ch. 2.5 - Design two different ladder networks that each...Ch. 2.5 - Show that if three shunt circuits (with...Ch. 2.5 - Prob. 29ECh. 2.5 - Find a different factorization of the A in...Ch. 2.6 - Suppose an economy has two sectors: goods and...Ch. 2.6 - Exercises 14 refer to an economy that is divided...Ch. 2.6 - Exercises 14 refer to an economy that is divided...Ch. 2.6 - Exercises 14 refer to an economy that is divided...Ch. 2.6 - Exercises 14 refer to an economy that is divided...Ch. 2.6 - Consider the production model x = Cx + d for an...Ch. 2.6 - Repeat Exercise 5 with C=[.1.6.5.2], and d=[1811]....Ch. 2.6 - Let C and d be as in Exercise 5. a. Determine the...Ch. 2.6 - Let C be an n n consumption matrix whose column...Ch. 2.6 - Solve the Leontief production equation for an...Ch. 2.6 - The consumption matrix C for the U.S. economy in...Ch. 2.6 - The Leontief production equation, x = Cx + d, is...Ch. 2.6 - Let C be a consumption matrix such that Cm 0 as m...Ch. 2.7 - Rotation of a figure about a point p in 2 is...Ch. 2.7 - What 3 3 matrix will have the same effect on...Ch. 2.7 - Use matrix multiplication to find the image of the...Ch. 2.7 - In Exercises 38, find the 3 3 matrices that...Ch. 2.7 - In Exercises 38, find the 3 3 matrices that...Ch. 2.7 - In Exercises 38, find the 3 3 matrices that...Ch. 2.7 - In Exercises 38, find the 3 3 matrices that...Ch. 2.7 - In Exercises 38, find the 3 3 matrices that...Ch. 2.7 - In Exercises 38, find the 3 3 matrices that...Ch. 2.7 - A 2 200 data matrix D contains the coordinates of...Ch. 2.7 - Consider the following geometric 2D...Ch. 2.7 - Prob. 11ECh. 2.7 - A rotation in 2 usually requires four...Ch. 2.7 - The usual transformations on homogeneous...Ch. 2.7 - Prob. 14ECh. 2.7 - What vector in 3 has homogeneous coordinates...Ch. 2.7 - Are (1. 2, 3, 4) and (10, 20, 30, 40) homogeneous...Ch. 2.7 - Give the 4 4 matrix that rotates points in 3...Ch. 2.7 - Give the 4 4 matrix that rotates points in 3...Ch. 2.7 - Let S be the triangle with vertices (4.2, 1.2,4),...Ch. 2.7 - Let S be the triangle with vertices (9,3,5),...Ch. 2.7 - [M] The actual color a viewer sees on a screen is...Ch. 2.7 - [M] The signal broadcast by commercial television...Ch. 2.8 - Let A=[115207353] and u=[732] Is u in Nul A? Is u...Ch. 2.8 - Given A=[010001000], find a vector in Nul A and a...Ch. 2.8 - Suppose an n n matrix A is invertible. What can...Ch. 2.8 - Exercises 14 display sets in 2. Assume the sets...Ch. 2.8 - Exercises 14 display sets in 2. Assume the sets...Ch. 2.8 - Exercises 14 display sets in 2. Assume the sets...Ch. 2.8 - Exercises 1-4 display sets in 2. Assume the sets...Ch. 2.8 - Let v1 = [235], v2 = [458], and w = [829]....Ch. 2.8 - Let v1 = [1243], v2 = [4797], v3 = [5865], and u =...Ch. 2.8 - Let v1 = [286], v2 = [387], v3 = [467], p =...Ch. 2.8 - Let v1 = [306], v2 = [223], v3 = [063], and p =...Ch. 2.8 - With A and p as in Exercise 7, determine if p is...Ch. 2.8 - With u = (2, 3, 1) and A as in Exercise 8,...Ch. 2.8 - In Exercises 11 and 12. give integers p and q such...Ch. 2.8 - In Exercises 11 and 12. give integers p and q such...Ch. 2.8 - For A as in Exercise 11, find a nonzero vector in...Ch. 2.8 - For A as in Exercise 12, find a nonzero vector in...Ch. 2.8 - Determine which sets in Exercises 15-20 are bases...Ch. 2.8 - Determine which sets in Exercises 15-20 are bases...Ch. 2.8 - Determine which sets in Exercises 15-20 are bases...Ch. 2.8 - Determine which sets in Exercises 15-20 are bases...Ch. 2.8 - Determine which sets in Exercises 15-20 are bases...Ch. 2.8 - Determine which sets in Exercises 15-20 are bases...Ch. 2.8 - In Exercises 21 and 22, mark each statement True...Ch. 2.8 - a. A subset H of n is a subspace if the zero...Ch. 2.8 - Exercises 23-26 display a matrix A and an echelon...Ch. 2.8 - Exercises 23-26 display a matrix A and an echelon...Ch. 2.8 - Exercises 23-26 display a matrix A and an echelon...Ch. 2.8 - Exercises 23-26 display a matrix A and an echelon...Ch. 2.8 - Construct a nonzero 3 3 matrix A and a nonzero...Ch. 2.8 - Construct a nonzero 3 3 matrix A and a vector b...Ch. 2.8 - Construct a nonzero 3 3 matrix A and a nonzero...Ch. 2.8 - Suppose the columns of a matrix A = [a1 ap] are...Ch. 2.8 - In Exercises 31-36, respond as comprehensively as...Ch. 2.8 - In Exercises 31-36. respond as comprehensively as...Ch. 2.8 - In Exercises 31-36, respond as comprehensively as...Ch. 2.8 - In Exercises 31-36, respond as comprehensively as...Ch. 2.8 - In Exercises 31-36, respond as comprehensively as...Ch. 2.8 - In Exercises 31-36, respond as comprehensively as...Ch. 2.8 - [M] In Exercises 37 and 38, construct bases for...Ch. 2.8 - [M] In Exercises 37 and 38, construct bases for...Ch. 2.9 - Determine the dimension of the subspace H of 3...Ch. 2.9 - Prob. 2PPCh. 2.9 - Could 3 possibly contain a four-dimensional...Ch. 2.9 - In Exercises 1 and 2, find the vector x determined...Ch. 2.9 - In Exercises 1 and 2, find the vector x determined...Ch. 2.9 - In Exercises 3-6, the vector s is in a subspace H...Ch. 2.9 - In Exercises 1 and 2, find the vector x determined...Ch. 2.9 - In Exercises 3-6, the vector x is in a subspace H...Ch. 2.9 - In Exercises 3-6, the vector x is in a subspace H...Ch. 2.9 - Let b1 = [30], b2 = [12], w = [72], x = [41], and...Ch. 2.9 - Let b1 = [02], b2 = [21], x = [23], y = [24], z =...Ch. 2.9 - Exercises 9-12 display a matrix A and an echelon...Ch. 2.9 - Exercises 9-12 display a matrix A and an echelon...Ch. 2.9 - Exercises 9-12 display a matrix A and an echelon...Ch. 2.9 - Exercises 9-12 display a matrix A and an echelon...Ch. 2.9 - In Exercises 13 and 14, find a basis for the...Ch. 2.9 - In Exercises 13 and 14, find a basis for the...Ch. 2.9 - Suppose a 3 5 matrix A has three pivot columns....Ch. 2.9 - Suppose a 4 7 matrix A has three pivot columns....Ch. 2.9 - In Exercises 17 and 18, mark each statement True...Ch. 2.9 - In Exercises 17 and 18, mark each statement True...Ch. 2.9 - If the subspace of all solutions of Ax = 0 has a...Ch. 2.9 - What is the rank of a 4 5 matrix whose null space...Ch. 2.9 - If the tank of a 7 6 matrix A is 4, what is the...Ch. 2.9 - Show that a set of vectors {v1, v2, , v5} in n is...Ch. 2.9 - If possible, construct a 3 4 matrix A such that...Ch. 2.9 - Constructa4 3 matrix with tank 1.Ch. 2.9 - Let A be an n p matrix whose column space is...Ch. 2.9 - Suppose columns 1, 3, 5, and 6 of a matrix A are...Ch. 2.9 - Suppose vectors b1, bp span a subspace W, and let...Ch. 2.9 - Use Exercise 27 to show that if A and B are bases...Ch. 2.9 - Prob. 29ECh. 2.9 - [M] Let H = Span {v1, v2, v3} and B= {v1, v2,...Ch. 2 - Assume that the matrices mentioned in the...Ch. 2 - Find the matrix C whose inverse is C1 = [4567].Ch. 2 - Show that A = [000100010]. Show that A3 = 0. Use...Ch. 2 - Suppose An = 0 for some n 1. Find an inverse for...Ch. 2 - Suppose an n n matrix A satisfies the equation A2...Ch. 2 - Prob. 6SECh. 2 - Let A = [1382411125] and B = [351534]. Compute A1B...Ch. 2 - Find a matrix A such that the transformation x Ax...Ch. 2 - Suppose AB =[5423] and B = [7321]. Find A.Ch. 2 - Suppose A is invertible. Explain why ATA is also...Ch. 2 - Let x1, , xn, be fixed numbers. The matrix below,...Ch. 2 - Prob. 12SECh. 2 - Given u in n with uTu = 1, Let P = uuT (an outer...Ch. 2 - Prob. 14SECh. 2 - Prob. 15SECh. 2 - Let A be an n n singular matrix Describe how to...Ch. 2 - Let A be a 6 4 matrix and B a 4 6 matrix. Show...Ch. 2 - Suppose A is a 5 3 matrix and mere exists a 3 5...Ch. 2 - Prob. 19SECh. 2 - [M] Let An be the n n matrix with 0s on the main...
Additional Math Textbook Solutions
Find more solutions based on key concepts
In Exercises 9-20, use the data in the following table, which lists drive-thru order accuracy at popular fast f...
Elementary Statistics (13th Edition)
In Exercises 5-36, express all probabilities as fractions.
23. Combination Lock The typical combination lock us...
Elementary Statistics
For Exercises 13–18, write the negation of the statement.
13. The cell phone is out of juice.
Math in Our World
Find all solutions of each equation in the interval .
Precalculus: A Unit Circle Approach (3rd Edition)
The largest polynomial that divides evenly into a list of polynomials is called the _______.
Elementary & Intermediate Algebra
Provide an example of a qualitative variable and an example of a quantitative variable.
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Într-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forwardQuestion 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forward
- R denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forward
- Question 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Linear Transformations on Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=is1cg5yhdds;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY