Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
2nd Edition
ISBN: 9780137443000
Author: Eugenia Etkina, Gorazd Planinsic
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 32P
* Use ray diagrams to locate the images of the following objects: (a) an object that is 10 cm from a convex lens of +15-cm focal length and (b) an object that is 10 cm from a concave lens of -15-cm focal length. (c) Calculate the image locations for parts (a) and (b) using the thin lens equation. Check for consistency.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please don't use Chatgpt will upvote and give handwritten solution
Please don't use Chatgpt will upvote and give handwritten solution
No chatgpt pls
Chapter 23 Solutions
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
Ch. 23 - Review Question 23.1 A mirror is hanging on a...Ch. 23 - Review Question 23.2 You've found a concave...Ch. 23 - Review Question 23.3 You place a concave mirror on...Ch. 23 - Review Question 23.5 Where should you place an...Ch. 23 - Review Question 23.6 If we have a mathematical...Ch. 23 - Review Question 23.7 What is the main difference...Ch. 23 - Review Question 23.8 If a person with normal...Ch. 23 - Review Question 23.9 Why is saying that a...Ch. 23 - Where does the image of an object in a plane...Ch. 23 - Where does the image of an object that is s meters...
Ch. 23 - 3. A plane mirror produces an image of an object...Ch. 23 - A concave mirror can produce an image that is...Ch. 23 - 5. A convex mirror can produce an image that is...Ch. 23 - 6. A virtual image is the image produced
a. on as...Ch. 23 - 7. To see an image of an object that is enlarged,...Ch. 23 - To see an image of an object that is enlarged,...Ch. 23 - Prob. 9MCQCh. 23 - 10. When drawing images of objects produced by...Ch. 23 - 11. The focal length of a glass lens is 10 cm....Ch. 23 - 12. A microbiologist uses a microscope to look at...Ch. 23 - 13. The human eye works in a similar way to which...Ch. 23 - Which of the following changes will result in a...Ch. 23 - When we draw a ray passing through the center of a...Ch. 23 - 16. You run toward a building with walls of a...Ch. 23 - 17. A tiny plane mirror can produce an image...Ch. 23 - Explain how we derived the mirror equation.Ch. 23 - 19. Explain how we derived the thin lens...Ch. 23 - Explain the difference between a real and a...Ch. 23 - You stand in front of a fun house mirror. You see...Ch. 23 - 22. A bubble of air is suspended underwater. Draw...Ch. 23 - 23. A bubble of oil is suspended in water. Draw...Ch. 23 - A typical person underwater cannot focus clearly...Ch. 23 - In a video projector, the picture that appears on...Ch. 23 - The retina has a blind spot at the place where the...Ch. 23 - You need to teach your friend how to draw rays to...Ch. 23 - Place a pencil in front of a plane mirror so that...Ch. 23 - 3.* Use geometry to prove that the virtual image...Ch. 23 - * You are 1.8 m tall. Where should you place the...Ch. 23 - 5. * Two people are standing in front of a...Ch. 23 - 6. * Test an idea Describe an experiment that you...Ch. 23 - * Describe in detail an experiment to find the...Ch. 23 - * Explain with a ray diagram how (a) a concave...Ch. 23 - 9. * Test an idea Describe an experiment to test...Ch. 23 - * Test an idea Describe an experiment to test the...Ch. 23 - 11. * Tablespoon mirror You look at yourself in...Ch. 23 - * Use ray diagrams and the mirror equation to...Ch. 23 - Repeat Problem 23.12 for a convex mirror of focal...Ch. 23 - 14. Use ray diagrams and the mirror equation to...Ch. 23 - 15. * Sinking ships A legend says that Archimedes...Ch. 23 - 16. * EST Fortune-teller A fortune-teller looks...Ch. 23 - * You view yourself in a large convex mirror of...Ch. 23 - * Seeing the Moon in a mirror The Moons diameter...Ch. 23 - 19. * You view your face in a +20-cm focal length...Ch. 23 - 20. * Buying a dental mirror A dentist wants to...Ch. 23 - * Using a dental mirror A dentist examines a tooth...Ch. 23 - * If you place a point-like light source on the...Ch. 23 - 24. * You have a convex lens and a candle....Ch. 23 - 25. * Explain how to draw ray diagrams to locate...Ch. 23 - * Draw ray diagrams to show how a convex lens can...Ch. 23 - 27. * Use a ruler to draw ray diagrams to locate...Ch. 23 - 28. * Repeat the procedure described in Problem...Ch. 23 - 29. * Repeat the procedure described in Problem...Ch. 23 - 30 * Repeat the procedure in Problem 23.27 for the...Ch. 23 - * Partially covering lens Your friend thinks that...Ch. 23 - * Use ray diagrams to locate the images of the...Ch. 23 - 33. *Use ray diagrams to locate the images of the...Ch. 23 - Light passes through a narrow slit, and then...Ch. 23 - * Describe two experiments that you can perform to...Ch. 23 - * Shaving/makeup mirror You wish to order a mirror...Ch. 23 - 37. Dentist lamps Dentists use special lamps that...Ch. 23 - 38. * A large concave mirror of focal length 3.0m...Ch. 23 - 39 * EST Two convex mirrors on the side of a van...Ch. 23 - Camera You are using a camera with a lens of focal...Ch. 23 - 42. * Camera A camera with an 8.0-cm focal length...Ch. 23 - Video projector An LCD video projector (LCD stands...Ch. 23 - Photo of carpenter ant You take a picture of a...Ch. 23 - * Photo of secret document A secret agent uses a...Ch. 23 - 46. * Photo of landscape To photograph a landscape...Ch. 23 - * Make a rough graph of image distance versus...Ch. 23 - * Make a rough graph of linear magnification...Ch. 23 - * Repeat Problem 23.48 for a concave lens of...Ch. 23 - BIO Eye The image distance for the lens of a...Ch. 23 - BIO Lens-retina distance Fish and amphibians...Ch. 23 - BIO Nearsighted and farsighted (a) A woman can...Ch. 23 - * BIO Prescribe glasses A man who can produce...Ch. 23 - 54. * BIO Correcting vision A woman who produces...Ch. 23 - 55. * BIO Where are the far and near points? (a) A...Ch. 23 - * BIO Age-related vision changes A 35-year-old...Ch. 23 - 5.7 Looking at an aphid You examine an aphid on a...Ch. 23 - 58. * Reading with a magnifying glass You examine...Ch. 23 - 59. * Seeing an image with a magnifying glass A...Ch. 23 - * Stamp collector A stamp collector is viewing a...Ch. 23 - * You place a +20-cm focal length convex lens at a...Ch. 23 - 62. * You place a +25-cm focal length convex lens...Ch. 23 - * EST You place a candle 10 cm in front of a...Ch. 23 - 64. * EST Repeat Problem 23.63 for an object...Ch. 23 - ** You measure the focal length of a concave lens...Ch. 23 - 66.** Telescope A telescope consists of a +4.0-cm...Ch. 23 - 67. ** Yerkes telescope The world’s largest...Ch. 23 - * Telescope A telescope consisting of a +3.0-cm...Ch. 23 - 69. *** Design a telescope You are marooned on a...Ch. 23 - * Microscope A microscope has a +0.50-cm objective...Ch. 23 - 71. ** BIO Dissecting microscope A dissecting...Ch. 23 - *** Microscope A microscope has an objective lens...Ch. 23 - 73. ** Microscope Determine the lens separation...Ch. 23 - * Figure P23.75 shows three cases of the primary...Ch. 23 - Prob. 78GPCh. 23 - ** Two-lens camera A two-lens camera (see Figure...Ch. 23 - **You have a small spherically shaped bottle made...Ch. 23 - BIO Find a farsighted person. Design an experiment...Ch. 23 - 82. BIO Find a nearsighted person. Design an...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - Prob. 89RPPCh. 23 - Prob. 90RPPCh. 23 - Prob. 91RPPCh. 23 - Prob. 92RPPCh. 23 - Prob. 93RPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
71. A 20 kg sphere is at the origin and a 10 kg sphere is at (x, y) = (20 cm, 0 cm). At what point or points co...
College Physics: A Strategic Approach (3rd Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby. A. First, if the rod was not there, what statement best describes the charge distribution of the ball? 1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball. B. Now, when the rod is moved close to the ball, what happens to the charges on the ball? 1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…arrow_forwardanswer question 5-9arrow_forwardAMPS VOLTS OHMS 5) 50 A 110 V 6) .08 A 39 V 7) 0.5 A 60 8) 2.5 A 110 Varrow_forward
- The drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made between the electric field with surface (2) is 30.0°. Solve in Nm²/C 1 Ө Surface 2 Surface 1arrow_forwardPROBLEM 5 What is the magnitude and direction of the resultant force acting on the connection support shown here? F₁ = 700 lbs F2 = 250 lbs 70° 60° F3 = 700 lbs 45° F4 = 300 lbs 40° Fs = 800 lbs 18° Free Body Diagram F₁ = 700 lbs 70° 250 lbs 60° F3= = 700 lbs 45° F₁ = 300 lbs 40° = Fs 800 lbs 18°arrow_forwardPROBLEM 3 Cables A and B are Supporting a 185-lb wooden crate. What is the magnitude of the tension force in each cable? A 20° 35° 185 lbsarrow_forward
- The determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig in answer)arrow_forwardPROBLEM 4 What is the resultant of the force system acting on the connection shown? 25 F₁ = 80 lbs IK 65° F2 = 60 lbsarrow_forwardThree point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forward
- STRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)arrow_forwardHello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY