EBK COLLEGE PHYSICS, VOLUME 2
11th Edition
ISBN: 8220103599924
Author: Vuille
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 32P
(a)
To determine
draw the ray diagram.
(b)
To determine
The location of the image.
(c)
To determine
The magnification of the image.
(d)
To determine
The image location and magnification of the image.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2.62 Collision. The engineer of a passenger train traveling at
25.0 m/s sights a freight train whose caboose is 200 m ahead on the
same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the
same direction as the passenger train. The engineer of the passenger
train immediately applies the brakes, causing a constant acceleration
of 0.100 m/s² in a direction opposite to the train's velocity, while the
freight train continues with constant speed. Take x = 0 at the location
of the front of the passenger train when the engineer applies the brakes.
(a) Will the cows nearby witness a collision? (b) If so, where will it take
place? (c) On a single graph, sketch the positions of the front of the pas-
senger train and the back of the freight train.
Can I get help with how to calculate total displacement? The answer is 78.3x-4.8y
2.70 Egg Drop. You are on the Figure P2.70
roof of the physics building, 46.0 m
above the ground (Fig. P2.70). Your
physics professor, who is 1.80 m tall,
is walking alongside the building at
a constant speed of 1.20 m/s. If you
wish to drop an egg on your profes-
sor's head, where should the profes-
sor be when you release the egg?
Assume that the egg is in free fall.
2.71 CALC The acceleration
of a particle is given by ax(t) =
-2.00 m/s² +(3.00 m/s³)t. (a)
Find the initial velocity Vox such that
v = 1.20 m/s
1.80 m
46.0 m
Chapter 23 Solutions
EBK COLLEGE PHYSICS, VOLUME 2
Ch. 23.1 - In the overhead view if Figure 23.3, the image of...Ch. 23.3 - A person spearfishing from a boat sees a fish...Ch. 23.3 - True or False: (a) The image of an object placed...Ch. 23.5 - A clear plastic sandwich bag filled with water can...Ch. 23.5 - In Figure 23.25a, the blue object arrow is...Ch. 23.5 - An object is placed to the left of a converging...Ch. 23 - Tape a picture of yourself on a bathroom mirror....Ch. 23 - Prob. 2CQCh. 23 - The top row of Figure CQ23.3 shows three ray...Ch. 23 - Construct ray diagrams to determine whether each...
Ch. 23 - Construct ray diagrams to determine whether each...Ch. 23 - Prob. 6CQCh. 23 - Suppose you want to use a converging lens to...Ch. 23 - Lenses used in eyeglasses, whether converging or...Ch. 23 - In a Jules Verne novel, a piece of ice is shaped...Ch. 23 - If a cylinder of solid glass or clear plastic is...Ch. 23 - Prob. 11CQCh. 23 - Prob. 12CQCh. 23 - Why does the focal length of a mirror not depend...Ch. 23 - A person spear fishing from a boat sees a...Ch. 23 - An object represented by a gray arrow, is placed...Ch. 23 - (a) Does your bathroom mirror show you older or...Ch. 23 - Suppose you stand in front of a flat mirror and...Ch. 23 - Prob. 3PCh. 23 - In a church choir loft, two parallel walls are...Ch. 23 - A periscope (Fig. P23.5) is useful for viewing...Ch. 23 - A dentist uses a mirror to examine a tooth that is...Ch. 23 - A convex spherical mirror, whose focal length has...Ch. 23 - To fit a contact lens to a patient's eye, a...Ch. 23 - A virtual image is formed 20.0 cm from a concave...Ch. 23 - While looking at her image in a cosmetic minor,...Ch. 23 - Prob. 11PCh. 23 - A dedicated sports car enthusiast polishes the...Ch. 23 - A concave makeup mirror it designed to that a...Ch. 23 - A 1.80-m-tall person stands 9.00 m in front of a...Ch. 23 - A man standing 1.52 m in front of a shaving mirror...Ch. 23 - Prob. 16PCh. 23 - At an intersection of hospital hallways, a convex...Ch. 23 - The mirror of a solar cooker focuses the Suns rays...Ch. 23 - A spherical mirror is to be used to form an image,...Ch. 23 - Prob. 20PCh. 23 - A cubical block of ice 50.0 cm on an edge is...Ch. 23 - A goldfish is swimming inside a spherical bowl of...Ch. 23 - A paperweight is made of a solid hemisphere with...Ch. 23 - The top of a swimming pool is at ground level. If...Ch. 23 - A transparent sphere of unknown composition is...Ch. 23 - A man inside a spherical diving bell watches a...Ch. 23 - A jellyfish is floating in a water-filled aquarium...Ch. 23 - Figure P23.28 shows a curved surface separating a...Ch. 23 - A contact lens is made of plastic with an index of...Ch. 23 - A thin plastic lens with index of refraction n =...Ch. 23 - A converging lens has a local length of 10.0 cm....Ch. 23 - Prob. 32PCh. 23 - A diverging lens has a focal length of magnitude...Ch. 23 - A diverging lens has a focal length of 20.0 cm....Ch. 23 - Prob. 35PCh. 23 - The nickels image in Figure P23.36 has twice the...Ch. 23 - An object of height 8.00 cm it placed 25.0 cm to...Ch. 23 - An object is located 20.0 cm to the left of a...Ch. 23 - A converging lens is placed 30.0 cm to the right...Ch. 23 - (a) Use the thin-lens equation to derive an...Ch. 23 - Two converging lenses, each of focal length 15.0...Ch. 23 - A converging lens is placed at x = 0, a distance d...Ch. 23 - A 1.00-cm-high object is placed 4.00 cm to the...Ch. 23 - Two converging lenses having focal length of f1 =...Ch. 23 - Lens L1 in figure P23.45 has a focal length of...Ch. 23 - An object is placed 15.0 cm from a first...Ch. 23 - Prob. 47APCh. 23 - Prob. 48APCh. 23 - Prob. 49APCh. 23 - Prob. 50APCh. 23 - The lens and the mirror in figure P23.51 are...Ch. 23 - The object in Figure P23.52 is mid-way between the...Ch. 23 - Prob. 53APCh. 23 - Two rays travelling parallel to the principal axis...Ch. 23 - To work this problem, use the fact that the image...Ch. 23 - Consider two thin lenses, one of focal length f1...Ch. 23 - An object 2.00 cm high is placed 10.0 cm to the...Ch. 23 - Prob. 58APCh. 23 - Figure P23.59 shows a converging lens with radii...Ch. 23 - Prob. 60APCh. 23 - The lens-makers equation for a lens with index n1...Ch. 23 - An observer to the right of the mirror-lens...Ch. 23 - The lens-markers equation applies to a lens...Ch. 23 - Prob. 64APCh. 23 - A glass sphere (n = 1.50) with a radius of 15.0 cm...Ch. 23 - An object 10.0 cm tall is placed at the zero mark...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One has to push down a ball with a force of 470 Newtons in order to hold the ball still, completely submerged under the surface of the water. What is the volume of the styrofoam ball in cubic meters? Use 997 kg/m3 as the density of water, 95 kg/m3 for the density of the styrofoam, and g = 9.8 m/s2.arrow_forwardThe cube is placed in a bucket of water and find that it floats, with 33% of its volume submerged below the surface of the water. What is the density of the mystery material? The material is uniformly distributed throughout the solid cube, with the number of kg/m3.arrow_forward2.82 A ball is thrown straight up from the ground with speed Up. At the same instant, a second ball is dropped from rest from a height H, directly above the point where the first ball was thrown upward. There is no air resistance. (a) Find the time at which the two balls collide. (b) Find the value of H in terms of un, and g such that at the instant when the balls collide, the first ball is at the highest point of its motion.arrow_forward
- The small piston has an area A1=0.033 m2 and the large piston has an area A2= 4.0 m2. What force F2 will the large piston provide if the small piston is pushed down with a force of 15 Newtons with an answer in Newtons?arrow_forward2.23 BIO Automobile Airbags. The human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the ac- celeration is less than 250 m/s². If you are in an automobile accident with an initial speed of 105 km/h (65 mi/h) and are stopped by an air- bag that inflates from the dashboard, over what minimum distance must the airbag stop you for you to survive the crash?arrow_forwardPlease solve and answer these problems correctly.Thank you!!arrow_forward
- 2.2. In an experiment, a shearwater (a seabird) was taken from its nest, flown 5150 km away, and released. The bird found its way back to its nest 13.5 days after release. If we place the origin at the nest and extend the +x-axis to the release point, what was the bird's average ve- locity in m/s (a) for the return flight and (b) for the whole episode, from leaving the nest to returning?arrow_forwardUse relevant diagrams where necessary and go through it in detailsarrow_forwardYour blood pressure (usually given in units of "mm of Hg") is a result of the heart muscle pushing on your blood. The left side of the heart creates a pressure of 115 mm Hg by exerting a force directly on the blood over an effective area of 14.5 cm2. What force does it exert to accomplish this? (Give your answer as the number of Newtons and note that you will need to do some unit conversions.)arrow_forward
- What is the absolute (total) pressure experienced by a diver at a depth of 17 meters below the surface of a lake? Assume that atmospheric pressure at the surface of the lake is 101,000 Pascals, g= 9.8 m/s2, and the density of the water in the lake is 997 kg/m3. Give your answer as the number of Pascals.arrow_forwardA particular solid cube has an edge of length 0.59 meters and is made of a material whose density is 3500 kg/m3. What is the mass of the cube? Give your answer as the number of kilograms.arrow_forwardSolve and answer correctly please.Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY