Inez is putting up decorations for her sister’s quinceañera (fifteenth birthday party). She ties three light silk ribbons together to the top of a gateway and hangs a rubber balloon from each ribbon (Fig. P23.88). To include the effects of the gravitational and buoyant forces on it, each balloon can be modeled as a particle of mass 2.00 g, with its center 50.0 cm from the point of support. Inez rubs the whole surface of each balloon with her woolen scarf, making the balloons hang separately with gaps between them. Looking directly upward from below the balloons, Inez notices that the centers of the hanging balloons from a horizontal equilateral triangle with sides 30.0 cm long. What is the common charge each balloon carries? Figure P23.88
Inez is putting up decorations for her sister’s quinceañera (fifteenth birthday party). She ties three light silk ribbons together to the top of a gateway and hangs a rubber balloon from each ribbon (Fig. P23.88). To include the effects of the gravitational and buoyant forces on it, each balloon can be modeled as a particle of mass 2.00 g, with its center 50.0 cm from the point of support. Inez rubs the whole surface of each balloon with her woolen scarf, making the balloons hang separately with gaps between them. Looking directly upward from below the balloons, Inez notices that the centers of the hanging balloons from a horizontal equilateral triangle with sides 30.0 cm long. What is the common charge each balloon carries? Figure P23.88
Solution Summary: The author explains the common charge on each balloon, and the diagram for the equilateral triangle formed by balloons.
Inez is putting up decorations for her sister’s quinceañera (fifteenth birthday party). She ties three light silk ribbons together to the top of a gateway and hangs a rubber balloon from each ribbon (Fig. P23.88). To include the effects of the gravitational and buoyant forces on it, each balloon can be modeled as a particle of mass 2.00 g, with its center 50.0 cm from the point of support. Inez rubs the whole surface of each balloon with her woolen scarf, making the balloons hang separately with gaps between them. Looking directly upward from below the balloons, Inez notices that the centers of the hanging balloons from a horizontal equilateral triangle with sides 30.0 cm long. What is the common charge each balloon carries?
Current Attempt in Progress
In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm?
d
Number
MI
Units
+q
Current Attempt in Progress
In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm?
d
Number
MI
Units
+q
A 0.500 kg sphere moving with a velocity given by (2.00î – 2.60ĵ + 1.00k) m/s strikes another sphere of mass 1.50 kg moving with an initial velocity of (−1.00î + 2.00ĵ – 3.20k) m/s.
(a) The velocity of the 0.500 kg sphere after the collision is (-0.90î + 3.00ĵ − 8.00k) m/s. Find the final velocity of the 1.50 kg sphere.
R =
m/s
Identify the kind of collision (elastic, inelastic, or perfectly inelastic).
○ elastic
O inelastic
O perfectly inelastic
(b) Now assume the velocity of the 0.500 kg sphere after the collision is (-0.250 + 0.850ĵ - 2.15k) m/s. Find the final velocity of the 1.50 kg sphere.
✓ =
m/s
Identify the kind of collision.
O elastic
O inelastic
O perfectly inelastic
(c) Take the velocity of the 0.500 kg sphere after the collision as (−1.00ỉ + 3.40] + ak) m/s. Find the value of a and the velocity of the 1.50 kg sphere after an elastic collision. (Two values of a are possible, a positive value and a negative value. Report each with their
corresponding final velocities.)
a…
Chapter 23 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.