Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 23, Problem 23.2OQ
To determine
The explanation of the reason that prevents gravity from pulling you through the ground to the center of the Earth.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
2. The nucleus in an iron atom has a radius of about 4.0×10-15 m and contains 26 protons.
(i) What is the magnitude of the repulsive electrostatic force between two of the protons that
are separated by 4.0×10-15 m? (b) What is the magnitude of the gravitational force between
those same two protons? [Given, e = +1.6x10-19 C and mp=1.67x1027 kg]
2.5
The force that acts between the electron and
nucleus of an atom is the same force that keeps the
planets in their orbits.
True
O False
choose the letter of the correct answer.
Chapter 23 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 23 - Three objects are brought close to each other, two...Ch. 23 - Three objects are brought close to one another,...Ch. 23 - Object A has a charge of +2 C, and object B has a...Ch. 23 - A test charge of +3 C is at a point P where an...Ch. 23 - Rank the magnitudes of the electric field at...Ch. 23 - A free electron and a free proton are released in...Ch. 23 - Prob. 23.2OQCh. 23 - A very small ball has a mass of 5.00 103 kg and a...Ch. 23 - An electron with a speed of 3.00 106 m/s moves...Ch. 23 - A point charge of 4.00 nC is located at (0, 1.00)...
Ch. 23 - A circular ring of charge with radius b has total...Ch. 23 - What happens when a charged insulator is placed...Ch. 23 - Estimate the magnitude of the electric field due...Ch. 23 - (i) A metallic coin is given a positive electric...Ch. 23 - Assume the charged objects in Figure OQ23.10 are...Ch. 23 - Three charged particles are arranged on corners of...Ch. 23 - Two point charges attract each other with an...Ch. 23 - Assume a uniformly charged ring of radius R and...Ch. 23 - An object with negative charge is placed in a...Ch. 23 - The magnitude of the electric force between two...Ch. 23 - (a) Would life be different if the electron were...Ch. 23 - A charged comb often attracts small bits of dry...Ch. 23 - A person is placed in a large, hollow, metallic...Ch. 23 - A student who grew up in a tropical country and is...Ch. 23 - If a suspended object A is attracted to a charged...Ch. 23 - Consider point A in Figure CQ23.6 located an...Ch. 23 - In fair weather, there is an electric field at the...Ch. 23 - Why must hospital personnel wear special...Ch. 23 - A balloon clings to a wall after it is negatively...Ch. 23 - Consider two electric dipoles in empty space. Each...Ch. 23 - A glass object receives a positive charge by...Ch. 23 - Find to three significant digits the charge and...Ch. 23 - (a) Calculate the number of electrons in a small,...Ch. 23 - Two protons in an atomic nucleus are typically...Ch. 23 - A charged particle A exerts a force of 2.62 N to...Ch. 23 - In a thundercloud, there may be electric charges...Ch. 23 - (a) Find the magnitude of the electric force...Ch. 23 - Review. A molecule of DNA (deoxyribonucleic acid)...Ch. 23 - Nobel laureate Richard Feynman (19181088) once...Ch. 23 - A 7.50-nC point charge is located 1.80 m from a...Ch. 23 - (a) Two protons in a molecule are 3.80 10-10 m...Ch. 23 - Three point charges are arranged as shown in...Ch. 23 - Three point charges lie along a straight line as...Ch. 23 - Two small beads having positive charges q1 = 3q...Ch. 23 - Two small beads having charges q1 and q2 of the...Ch. 23 - Three charged panicles are located at the corners...Ch. 23 - Two small metallic spheres, each of mass m = 0.200...Ch. 23 - Review. In the Bohr theory of the hydrogen atom,...Ch. 23 - Particle A of charge 3.00 104 C is at the origin,...Ch. 23 - A point charge +2Q is at the origin and a point...Ch. 23 - Review. Two identical particles, each having...Ch. 23 - Two identical conducting small spheres are placed...Ch. 23 - Why is the following situation impossible? Two...Ch. 23 - What are the magnitude and direction of the...Ch. 23 - A small object of mass 3.80 g and charge 18.0 C is...Ch. 23 - Four charged particles are at the corners of a...Ch. 23 - Three point charges lie along a circle of radius r...Ch. 23 - Two equal positively charged particles are at...Ch. 23 - Consider n equal positively charged particles each...Ch. 23 - In Figure P23.29, determine the point (other than...Ch. 23 - Three charged particles are at the corners of an...Ch. 23 - Three point charges are located on a circular arc...Ch. 23 - Two charged particles are located on the x axis....Ch. 23 - A small, 2.00-g plastic ball is suspended by a...Ch. 23 - Two 2.00-C point charges are located on the x...Ch. 23 - Three point charges are arranged as shown in...Ch. 23 - Consider the electric dipole shown in Figure...Ch. 23 - A rod 14.0 cm long is uniformly charged and has a...Ch. 23 - A uniformly charged disk of radius 35.0 cm carries...Ch. 23 - A uniformly charged ring of radius 10.0 cm has a...Ch. 23 - The electric field along the axis of a uniformly...Ch. 23 - Example 23.3 derives the exact expression for the...Ch. 23 - A uniformly charged rod of length L and total...Ch. 23 - A continuous line of charge lies along the x axis,...Ch. 23 - A thin rod of length and uniform charge per unit...Ch. 23 - A uniformly charged insulating rod of length 14.0...Ch. 23 - (a) Consider a uniformly charged, thin-walled,...Ch. 23 - A negatively charged rod of finite length carries...Ch. 23 - A positively charged disk has a uniform charge per...Ch. 23 - Figure P23.49 shows the electric field lines for...Ch. 23 - Three equal positive charges q are at the corners...Ch. 23 - A proton accelerates from rest in a uniform...Ch. 23 - A proton is projected in the positive x direction...Ch. 23 - An electron and a proton are each placed at rest...Ch. 23 - Protons are projected with an initial speed vi =...Ch. 23 - The electrons in a particle beam each have a...Ch. 23 - Two horizontal metal plates, each 10.0 cm square,...Ch. 23 - A proton moves at 4.50 105 m/s in the horizontal...Ch. 23 - Three solid plastic cylinders all have radius 2.50...Ch. 23 - Consider an infinite number of identical...Ch. 23 - A particle with charge 3.00 nC is at the origin,...Ch. 23 - A small block of mass m and charge Q is placed on...Ch. 23 - A small sphere of charge q1 = 0.800 C hangs from...Ch. 23 - A line of charge starts at x = +x0 and extends to...Ch. 23 - A small sphere of mass m = 7.50 g and charge q1 =...Ch. 23 - A uniform electric field of magnitude 640 N/C...Ch. 23 - Two small silver spheres, each with a mass of 10.0...Ch. 23 - A charged cork ball of mass 1.00 g is suspended on...Ch. 23 - A charged cork ball of mass m is suspended on a...Ch. 23 - Three charged particles are aligned along the x...Ch. 23 - Two point charges qA = 12.0 C and qB = 45.0 C and...Ch. 23 - A line of positive charge is formed into a...Ch. 23 - Four identical charged particles (q = +10.0 C) are...Ch. 23 - Two small spheres hang in equilibrium at the...Ch. 23 - Why is the following situation impossible? An...Ch. 23 - Review. Two identical blocks resting on a...Ch. 23 - Review. Two identical blocks resting on a...Ch. 23 - Three identical point charges, each of mass m =...Ch. 23 - Show that the maximum magnitude Emax of the...Ch. 23 - Two hard rubber spheres, each of mass m = 15.0 g,...Ch. 23 - Two identical beads each have a mass m and charge...Ch. 23 - Two small spheres of mass m are suspended from...Ch. 23 - Review. A negatively charged particle q is placed...Ch. 23 - Review. A 1.00-g cork ball with charge 2.00 C is...Ch. 23 - Identical thin rods of length 2a carry equal...Ch. 23 - Eight charged panicles, each of magnitude q, are...Ch. 23 - Consider the charge distribution shown in Figure...Ch. 23 - Review. An electric dipole in a uniform horizontal...Ch. 23 - Inez is putting up decorations for her sisters...Ch. 23 - A line of charge with uniform density 35.0 nC/m...Ch. 23 - A particle of mass m and charge q moves at high...Ch. 23 - Two particles, each with charge 52.0 nC, are...
Knowledge Booster
Similar questions
- Assume that a room at sea level is filled with a gas of nitrogen molecules N2 in thermal equilibrium at -10.0 °C (negative ten degrees Celsius). There are 7 protons and 7 neutrons in the nucleus of a nitrogen atom N. You may take the masses of the proton and the neutron to be the same, and ignore the mass of the electrons. 1 atm=1.01x105 N/m² , h=1.05x10-34 J-s , mp=1.67x10-27 kg, kB = 1.38x10-23 J/K . a) What is the (particle) number density n according to the ideal gas law? b) Compare the number density n with the quantum concentration ng at the same temperature. c) Is the gas in the classical or quantum regime?arrow_forwardA proton, which is the nucleus of a hydrogen atom, can be modeled as a sphere with a diameter of 2.4 fm and a mass of 1.67 10-27 kg. Determine the density of the proton (kg/m^3)arrow_forwardAssume the electron in a hydrogen atom is 53.0 pm from the nucleus of the atom, which consists of a single proton. (a) calculate the electrical force between the electron and the nucleus. (b) Calculate the gravitational force between the electron and the nucleus. (c) What is the ratio of the gravitational force to the electrical force?arrow_forward
- A typical carbon nucleus contains 6 neutrons and 6 protons. The 6 protons are all positively charged and in very close proximity, with separations on the order of 10-15 meters, which should result in an enormous repulsive force. What prevents the nucleus from dismantling itself due to the repulsion of the electric force? a. The attractive nature of the strong nuclear force overpowers the electric force. b. The weak nuclear force barely offsets the electric force. c. Magnetic forces generated by the orbiting electrons create a stable minimum in which the nuclear charged particles reside. d. The attractive electric force of the surrounding electrons is equal in all directions and cancels out, leaving no net electric force.arrow_forward17) Shown below is a structure of seven atoms with a "B" atom in the middle surrounded by "A" atoms. Nearest neighbors are separated by ro. A A A B A A A: 42 x 10-2¹ J B: 7 x 10-21 J C: 30 x 10-21 J D: 15 x 10-21 J E: 5 x 10-21 J A How much energy is required to remove only the B atom from the center, given that the well depth for an A-A pair is 2 x 10-2¹J and for a A-B pair is 5 x 10-2¹J?arrow_forward2. An electron in an energy level of an atom moves in a circular path around a nucleus. The radius of the path is 1.2 x 10-11 m and the speed of the electron is 1.03 x 107 ms-1 (a) Find the centripetal acceleration of the electron. (b) Which experiences the greater force - the electron or the nucleus? (c) Find the magnitude of the force causing centripetal acceleration. (d) What is the nature of the force causing centripetal acceleration? 1.03 x67 (e) Determine the number of protons in the nucleus of the atom.arrow_forward
- 10) Now you have a nucleus with 13 protons at x = 6.2 Angstroms on the x-axis. How much work would it take to bring in ANOTHER nucleus with 7 protons from 1 m away and place it at y = 8.0 Angstroms on the y-axis? 70.0 eV 116.7 eV -12.6 eV 129.3 eVarrow_forwardWhat electrostatic force acts between two protons in a nucleus if they are 4×10-15 m apart? Select one: O a. 8.8x109 (attractive) O b. 8.8×10 (repulsive) O c. 14N (repulsive) O d. 14N (attractive)arrow_forward9 8 7+ 6+ 5+ 4+ 3+ 2+ 1 ||ū|| 1 = 2 3 → U 4 LO 5 6 7 Find the magnitude of u. Enter an exact answer as an expression with a square root symbol or enter an approximate answer as a decimal rounded to the nearest hundredth. 8 9arrow_forward
- I've tried KE= (m1+m2)gh and m2gh but both of those did not workarrow_forwardWrite the letter corresponding to your correct answer.arrow_forwardAn electron is 0.5 Å away from a carbon nucleus which contains 6 protons. Find the mutual force of attraction between the nucleus and the electron. 1Å (Angstrom)= 10^-10m, e=1.6x10^-19C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning