Inez is putting up decorations for her sister’s quinceañera (fifteenth birthday party). She ties three light silk ribbons together to the top of a gateway and hangs a rubber balloon from each ribbon (Fig. P23.88). To include the effects of the gravitational and buoyant forces on it, each balloon can be modeled as a particle of mass 2.00 g, with its center 50.0 cm from the point of support. Inez rubs the whole surface of each balloon with her woolen scarf, making the balloons hang separately with gaps between them. Looking directly upward from below the balloons, Inez notices that the centers of the hanging balloons from a horizontal equilateral triangle with sides 30.0 cm long. What is the common charge each balloon carries? Figure P23.88
Inez is putting up decorations for her sister’s quinceañera (fifteenth birthday party). She ties three light silk ribbons together to the top of a gateway and hangs a rubber balloon from each ribbon (Fig. P23.88). To include the effects of the gravitational and buoyant forces on it, each balloon can be modeled as a particle of mass 2.00 g, with its center 50.0 cm from the point of support. Inez rubs the whole surface of each balloon with her woolen scarf, making the balloons hang separately with gaps between them. Looking directly upward from below the balloons, Inez notices that the centers of the hanging balloons from a horizontal equilateral triangle with sides 30.0 cm long. What is the common charge each balloon carries? Figure P23.88
Solution Summary: The author explains the common charge on each balloon, and the diagram for the equilateral triangle formed by balloons.
Inez is putting up decorations for her sister’s quinceañera (fifteenth birthday party). She ties three light silk ribbons together to the top of a gateway and hangs a rubber balloon from each ribbon (Fig. P23.88). To include the effects of the gravitational and buoyant forces on it, each balloon can be modeled as a particle of mass 2.00 g, with its center 50.0 cm from the point of support. Inez rubs the whole surface of each balloon with her woolen scarf, making the balloons hang separately with gaps between them. Looking directly upward from below the balloons, Inez notices that the centers of the hanging balloons from a horizontal equilateral triangle with sides 30.0 cm long. What is the common charge each balloon carries?
4.36 ... CP An advertisement claims that a particular automobile can
"stop on a dime." What net force would be necessary to stop a 850 kg
automobile traveling initially at 45.0 km/h in a distance equal to the di-
ameter of a dime, 1.8 cm?
4.46
The two blocks in Fig. P4.46 are connected
by a heavy uniform rope with a mass of 4.00 kg. An up-
ward force of 200 N is applied as shown. (a) Draw three
free-body diagrams: one for the 6.00 kg block, one for
B
the 4.00 kg rope, and another one for the 5.00 kg block. For each force,
indicate what object exerts that force. (b) What is the acceleration of the
system? (c) What is the tension at the top of the heavy rope? (d) What is
the tension at the midpoint of the rope?
Figure P4.46
F= 200 N
4.00 kg
6.00 kg
5.00 kg
4.35 ⚫ Two adults and a child want to push a wheeled cart in the direc-
tion marked x in Fig. P4.35 (next page). The two adults push with hori-
zontal forces F and F as shown. (a) Find the magnitude and direction of
the smallest force that the child should exert. Ignore the effects of friction.
(b) If the child exerts the minimum force found in part (a), the cart ac-
celerates at 2.0 m/s² in the +x-direction. What is the weight of the cart?
Figure P4.35
F₁ = 100 N
60°
30°
F2 = 140 N
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.