Concept explainers
DATA The Millikan Oil-Drop Experiment. The charge of an electron was first measured by the American physicist Robert Millikan during 1909–1913. In his experiment, oil was sprayed in very fine drops (about 10−4 mm in diameter) into the space between two parallel horizontal plates separated by a distance d. A potential difference VAB was maintained between the plates, causing a downward electric field between them. Some of the oil drops acquired a negative charge because of frictional effects or because of ionization of the surrounding air by x rays or radioactivity. The drops were observed through a microscope, (a) Show that an oil drop of radius r at rest between the plates remained at rest if the magnitude of its charge was
where ρ is oil’s density. (Ignore the buoyant force of the air.) By adjusting VAB to keep a given drop at rest, Millikan determined the charge on that drop, provided its radius r was known, (b) Millikan’s oil drops were much too small to measure their radii directly. Instead, Millikan determined r by cutting off the electric field and measuring the terminal speed υt of the drop as it fell. (We discussed terminal speed in Section 5.3.) The viscous force F on a sphere of radius r moving at speed υ through a fluid with viscosity η is given by Stokes’s law: F = 6πηrυ. When a drop fell at υt, the viscous force just balanced the drop’s weight w = mg. Show that the magnitude of the charge on the drop was
(c) You repeat the Millikan oil-drop experiment. Four of your measured values of VAB and υt are listed in the table:
In your apparatus, the separation d between the horizontal plates is 1.00 mm. The density of the oil you use is 824 kg/m3. For the viscosity η of air, use the value 1.81 × 10−4 N · s/m2. Assume that g = 9.80 m/s2. Calculate the charge q of each drop, (d) If electric charge is quantized (that is, exists in multiples of the magnitude of the charge of an electron), then the charge on each drop is −ne, where n is the number of excess electrons on each drop. (All four drops in your table have negative charge.) Drop 2 has the smallest magnitude of charge observed in the experiment, for all 300 drops on which measurements were made, so assume that its charge is due to an excess charge of one electron. Determine the number of excess electrons n for each of the other three drops, (e) Use q = −ne to calculate e from the data for each of the four drops, and average these four values to get your best experimental value of e.
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Additional Science Textbook Solutions
Campbell Biology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Biology: Life on Earth (11th Edition)
Anatomy & Physiology (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Microbiology: An Introduction
- A sky diver of mass 90 kg (with suit and gear) is falling at terminal speed. What is the upward force of air drag, and how do you know?arrow_forwardA car is traveling at top speed on the Bonneville salt flats while attempting a land speed record. The tires exert 25 kN of force in the backward direction on the ground. Why backwards? How large are the forces resisting the forward motion of the car, and why?arrow_forwardA bee strikes a windshield of a car on the freeway and gets crushed. What can you conclude about the force on the bee versus the force on the windshield, and on what principle is this based?arrow_forward
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardFour point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College