PRACT STAT W/ ACCESS 6MO LOOSELEAF
PRACT STAT W/ ACCESS 6MO LOOSELEAF
4th Edition
ISBN: 9781319215361
Author: BALDI
Publisher: Macmillan Higher Education
Question
Book Icon
Chapter 23, Problem 23.38E

(a)

To determine

To explain:

The scatterplot of white matter change and the explanatory of the given data.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The table of the exposure and change.

Concept used:

Formula

The binomial distribution

  p[X=x]=(nx)pxqnx

Calculation:

Scatter plot is given as the table

The weak is negative relationship exists.

Because the value of r=0.30

Where r is negative

Let us perform the regression

Regressing sub concussion exposure on white matter change with below mentioned steps in excel

  X And Y are two variables.

SUMMARY OUTPUT

Regression Statistics

Multiple R =0.368868063

R Square =0.136063648

Adjusted R Square =0.09286683

Standard Error = 3.467466463

Observations =22

Draw the table

    DegreeSSMSFSignificant
    Regression 137.8717083337.87173.1498540.091157025
    Residual 20240.466473512.02332
    Total 21278.3381818

Draw the second table

    CoefficientStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%
    Intercept2.2720152571.2015559641.8908940.073215-0.2343865574.778417071-0.234386557 4.778417071
    X-6.912959936 3.895102237-1.774780.091157-15.03800081.212080931-15.03800081.212080931

(b)

To determine

To find:

Theregression standard error of the given data.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The table of the exposure and change.

Concept used:

Formula

The binomial distribution

  p[X=x]=(nx)pxqnx

Calculation:

Scatter plot is given as the table

The weak is negative relationship exists.

Because the value of r=0.30

Where r is negative

Let us perform the regression

Regressing sub concussion exposure on white matter change with below mentioned steps in excel

  X And Y are two variables.

SUMMARY OUTPUT

Regression Statistics

Multiple R =0.368868063

R Square =0.136063648

Adjusted R Square =0.09286683

Standard Error = 3.467466463

Observations =22

Draw the table

    DegreeSSMSFSignificant
    Regression 137.8717083337.87173.1498540.091157025
    Residual 20240.466473512.02332
    Total 21278.3381818

Draw the second table

    CoefficientStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%
    Intercept2.2720152571.2015559641.8908940.073215-0.2343865574.778417071-0.234386557 4.778417071
    X-6.912959936 3.895102237-1.774780.091157-15.03800081.212080931-15.03800081.212080931

Here X= exposure

  Y= Change as variable

So least squares regression line

Change ( Y ) = 6.913 Exposure (X) + 2.272

Regression standard error = 3.467

The low p-value of 0.0912 of the Exposure coefficient, indicates that a confidence level of 90% (where p-value of 0.1 ) that the Exposure is a significant predictor of white matter Change.

Hence, the null hypothesis of no relationship between exposure and white matter change can be rejected in favor of the alternative hypothesis at a confidence level of 10%.

(c)

To determine

To explain:

Theequation for the least-squares regression line without data point and test null hypothesis of the given data.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The table of the exposure and change.

Concept used:

Formula

The binomial distribution

  p[X=x]=(nx)pxqnx

Calculation:

Scatter plot is given as the table

The weak is negative relationship exists.

Because the value of r=0.30

Where r is negative

Let us perform the regression

Regressing sub concussion exposure on white matter change with below mentioned steps in excel

  X And Y are two variables.

SUMMARY OUTPUT

Regression Statistics

Multiple R =0.368868063

R Square =0.136063648

Adjusted R Square =0.09286683

Standard Error = 3.467466463

Observations =22

Draw the table

    DegreeSSMSFSignificant
    Regression 137.8717083337.87173.1498540.091157025
    Residual 20240.466473512.02332
    Total 21278.3381818

Draw the second table

    CoefficientStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%
    Intercept2.2720152571.2015559641.8908940.073215-0.2343865574.778417071-0.234386557 4.778417071
    X-6.912959936 3.895102237-1.774780.091157-15.03800081.212080931-15.03800081.212080931

Here X= exposure

  Y= Change as variable

So least squares regression line

Change ( Y ) = 6.913 Exposure (X) + 2.272

Regression standard error = 3.467

The low p-value of 0.0912 of the Exposure coefficient, indicates that a confidence level of 90% (where p-value of 0.1 ) that the Exposure is a significant predictor of white matter Change.

Hence, the null hypothesis of no relationship between exposure and white matter change can be rejected in favor of the alternative hypothesis at a confidence level of 10%.

SUMMARY OUTPUT

Regression Statistics

Multiple R =0.104318418

R Square =0.010882332

Adjusted R Square =-0.041176492

Standard Error = 3.471079833

Observations =21

Draw the table

    DegreeSSMSFSignificant
    Regression 12.5185862442.5185860.2090390.652706126
    Residual 19228.91950912.0484
    Total 20231.4380952

Draw the second table

    CoefficientStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%
    Intercept1.475861.451931.016480.32216-1.563064.51480-1.563064.51480
    X-2.66665.83246-0.457210.65270-14.87419.5408-14.87419.54083

Standard error is same

But the p value is 0.65

Exposure is not good predictor of Change in white matter.

Also, the Exposure coefficient has come down from 6.91 to 2.67 ,

(d)

To determine

To explain:

Theimpact of the usual observation on the regression analysis of the given data.

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

The table of the exposure and change.

Concept used:

Formula

The binomial distribution

  p[X=x]=(nx)pxqnx

Calculation:

Scatter plot is given as the table

The weak is negative relationship exists.

Because the value of r=0.30

Where r is negative

Let us perform the regression

Regressing sub concussion exposure on white matter change with below mentioned steps in excel

  X And Y are two variables.

SUMMARY OUTPUT

Regression Statistics

Multiple R =0.368868063

R Square =0.136063648

Adjusted R Square =0.09286683

Standard Error = 3.467466463

Observations =22

Draw the table

    DegreeSSMSFSignificant
    Regression 137.8717083337.87173.1498540.091157025
    Residual 20240.466473512.02332
    Total 21278.3381818

Draw the second table

    CoefficientStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%
    Intercept2.2720152571.2015559641.8908940.073215-0.2343865574.778417071-0.234386557 4.778417071
    X-6.912959936 3.895102237-1.774780.091157-15.03800081.212080931-15.03800081.212080931

Here X= exposure

  Y= Change as variable

So least squares regression line

Change ( Y ) = 6.913 Exposure (X) + 2.272

Regression standard error = 3.467

The low p-value of 0.0912 of the Exposure coefficient, indicates that a confidence level of 90% (where p-value of 0.1 ) that the Exposure is a significant predictor of white matter Change.

Hence, the null hypothesis of no relationship between exposure and white matter change can be rejected in favor of the alternative hypothesis at a confidence level of 10%.

SUMMARY OUTPUT

Regression Statistics

Multiple R =0.104318418

R Square =0.010882332

Adjusted R Square =-0.041176492

Standard Error = 3.471079833

Observations =21

Draw the table

    DegreeSSMSFSignificant
    Regression 12.5185862442.5185860.2090390.652706126
    Residual 19228.91950912.0484
    Total 20231.4380952

Draw the second table

    CoefficientStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%
    Intercept1.475861.451931.016480.32216-1.563064.51480-1.563064.51480
    X-2.66665.83246-0.457210.65270-14.87419.5408-14.87419.54083

Standard error is same

But the p value is 0.65

Exposure is not good predictor of Change in white matter.

Also, the Exposure coefficient has come down from 6.91 to 2.67 ,

The Change in white matter will not actually change as fast

So,eliminate of the outlier data points.

The Outlier data points tend to increase the correlation between the two variables.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Using the accompanying Home Market Value data and associated regression​ line, Market ValueMarket Valueequals=​$28,416+​$37.066×Square ​Feet, compute the errors associated with each observation using the formula e Subscript ieiequals=Upper Y Subscript iYiminus−ModifyingAbove Upper Y with caret Subscript iYi and construct a frequency distribution and histogram.   LOADING... Click the icon to view the Home Market Value data.       Question content area bottom Part 1 Construct a frequency distribution of the​ errors, e Subscript iei.   ​(Type whole​ numbers.) Error Frequency minus−15 comma 00015,000less than< e Subscript iei less than or equals≤minus−10 comma 00010,000 0   minus−10 comma 00010,000less than< e Subscript iei less than or equals≤minus−50005000 5   minus−50005000less than< e Subscript iei less than or equals≤0 21   0less than< e Subscript iei less than or equals≤50005000 9…
The managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c   Overhead Costs    Billable Hours345000    3000385000    4000410000    5000462000    6000530000    7000545000    8000
Using the accompanying Home Market Value data and associated regression​ line, Market ValueMarket Valueequals=​$28,416plus+​$37.066×Square ​Feet, compute the errors associated with each observation using the formula e Subscript ieiequals=Upper Y Subscript iYiminus−ModifyingAbove Upper Y with caret Subscript iYi and construct a frequency distribution and histogram. Square Feet    Market Value1813    911001916    1043001842    934001814    909001836    1020002030    1085001731    877001852    960001793    893001665    884001852    1009001619    967001690    876002370    1139002373    1131001666    875002122    1161001619    946001729    863001667    871001522    833001484    798001589    814001600    871001484    825001483    787001522    877001703    942001485    820001468    881001519    882001518    885001483    765001522    844001668    909001587    810001782    912001483    812001519    1007001522    872001684    966001581    86200
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman