Concept explainers
(i)
The comparison of the magnitude of electric forces exerted on the two particles.
(i)
Answer to Problem 1OQ
Option (c) They are equal.
Explanation of Solution
Write the equation for electric force.
Here,
Write the equation for the electric field on the free electron.
Here,
Write the equation for the electric field on the free proton.
Conclusion:
Substitute
Substitute
In an identical electric field, the magnitude of electric force exerted on a free electron, and on a free proton is equal.
The magnitude of electric force in free electron and free proton is equal as calculated above, therefore options (a), (b), (d) and (e) are incorrect.
Therefore, option (c) is correct.
(ii)
The comparison of magnitudes of their acceleration.
(ii)
Answer to Problem 1OQ
Option (b) It is thousands of times greater for the electron.
Explanation of Solution
Write the equation for acceleration.
Here,
Particle's acceleration is inversely proportional to the mass of the particle.
Acceleration of free electron is inversely proportional to the mass of the free electron.
Acceleration of free proton is inversely proportional to the mass of the free proton.
Conclusion:
Substitute
Substitute
Divide equation (V) and (VI).
Mass of free proton is thousand times greater than the mass of the free electron, so the acceleration of free electron will be thousand times greater than the acceleration for free proton, as shown in equation (V), (VI) and (VII).
The acceleration of free electron will be a thousand times greater than the acceleration for free proton, therefore options (a), (c), (d) and (e) are incorrect.
Therefore, option (b) is correct.
Want to see more full solutions like this?
Chapter 23 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- pls help asaparrow_forwardpls help asaparrow_forward2. Max is swimming across a river that is 42.6 m wide. He can swim at 1.6 m/s and heads 20° to the right of the vertical. There is a current pushing him more to the right and it has a speed of 0.30 m/s. Determine the time it takes him to cross the river and find out how far downstream he ends up. Draw the diagram.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning