College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 23, Problem 19PE
At what speed must the sliding rod in Figure 23.11 move to produce an emf of 1.00 V in a 1.50 T field, given the rod’s length is 30.0 cm?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
At what speed must a sliding rod move to
produce an emf of 1.05 V in a 1.54 T field,
given the rod's length is 30.3 cm?
m/s
At what speed must the sliding rod in Figure 23.11 move to produce an emf of 1.00 V in a 1.50 T field, given the rod’s length is 30.0 cm?
1. A 11.8 ?F capacitor is charged by a 25.0 V battery through a resistance R. The capacitor reaches a potential difference of 4.00 V at a time 3.00 s after charging begins. Find R.
________ kΩ
2.A proton moves perpendicular to a uniform magnetic field at a speed of 1.20 107 m/s and experiences an acceleration of 1.40 1013 m/s2 in the positive x-direction when its velocity is in the positive z-direction. Determine the magnitude and direction of the field.
magnitude _______
PLEASE ANSWER BOTH
Chapter 23 Solutions
College Physics
Ch. 23 - How do the multiple-loop coils and iron ring in...Ch. 23 - When a magnet is thrust into a coil as in Figure...Ch. 23 - Explain how magnetic flux can be zero when the...Ch. 23 - Is an emf induced in the coil in Figure 23.54 when...Ch. 23 - A person who works with large magnets sometimes...Ch. 23 - A particle accelerator sends highvelocity charged...Ch. 23 - Why must pan of the circuit be moving relative to...Ch. 23 - A powerful induction cannon can be made by placing...Ch. 23 - An induction slave heats a pot with a coil...Ch. 23 - Explain how you could thaw out a frozen water pipe...
Ch. 23 - Explain why magnetic damping might not be...Ch. 23 - Explain how electromagnetic induction can be used...Ch. 23 - Using RHR-l, show that the emfs in the sides of...Ch. 23 - The source of a generator’s electrical energy...Ch. 23 - Suppose you find that the belt drive connecting a...Ch. 23 - Explain what causes physical vibrations in...Ch. 23 - Does plastic insulation on live/hot wires prevent...Ch. 23 - Why are ordinary circuit breakers and fuses...Ch. 23 - A GFI may trip just because the live/hot and...Ch. 23 - How would you place two identical flat coils in...Ch. 23 - How would you shape a given length of wire to give...Ch. 23 - €22. Verify, as was concluded without proof in...Ch. 23 - Presbycusis is a hearing loss due to age that...Ch. 23 - Would you use a large inductance or a large...Ch. 23 - High-frequency noise in AC power can damage...Ch. 23 - Does inductance depend on current, frequency, or...Ch. 23 - Explain why the capacitor in Figure 23.55(a) acts...Ch. 23 - If the capacitors in Figure 23.55 are replaced by...Ch. 23 - Does the resonant frequency of an AC circuit...Ch. 23 - Suppose you have a motor with a power factor...Ch. 23 - What is the value of the magnetic flux at coil 2...Ch. 23 - What is the value of the magnetic flux through the...Ch. 23 - Referring to Figure 23.5?(a), what is the...Ch. 23 - Referring to Figure 23.57(b), what is the...Ch. 23 - Referring to Figure 23.58, what are the directions...Ch. 23 - Repeat the previous problem with the battery...Ch. 23 - Verify that the units /t are volts. That is, show...Ch. 23 - Suppose a 50-turn coil lies in the plane of the...Ch. 23 - (a) An MRI technician moves his hand from a region...Ch. 23 - Integrated Concepts Referring to the situation in...Ch. 23 - An emf is induced by rotating a 1000-turn, 20.0 cm...Ch. 23 - A 0.250 m radius, 500-turn coil is rotated...Ch. 23 - Integrated Concepts Approximately how does the emf...Ch. 23 - Integrated Concepts A lightning bolt produces a...Ch. 23 - Use Faraday’s law, Lenz’s law, and RHR—l to show...Ch. 23 - If a current flows in the Satellite Tether shown...Ch. 23 - (a) A jet airplane with a 75.0 m wingspan is...Ch. 23 - (a) A nonferrous screwdriver is being used in a...Ch. 23 - At what speed must the sliding rod in Figure 23.11...Ch. 23 - The 12.0 cm long rod in Figure 23.11 moves at 4.00...Ch. 23 - Prove that when B, l, and v are not mutually...Ch. 23 - In the August 1992 space shuttle flight, only 250...Ch. 23 - Integrated Concepts Derive an expression for the...Ch. 23 - Integrated Concepts The Tethered Satellite in...Ch. 23 - Integrated Concepts The Tethered Satellite...Ch. 23 - Make a drawing similar to Figure 23.14, but with...Ch. 23 - Figure 23.59 A coil is moved into and out of a...Ch. 23 - Calculate the peak voltage of a generator that...Ch. 23 - At what angular velocity in rpm will the peak...Ch. 23 - What is the peak emf generated by rotating a...Ch. 23 - What is the peak emf generated by a 0.250 m...Ch. 23 - (a) A bicycle generator rotates at 1875 rad/s,...Ch. 23 - Integrated Concepts This problem refers to the...Ch. 23 - (a) A car generator turns at 400 rpm when 1he...Ch. 23 - Show that if a coil rotates at an angular velocity...Ch. 23 - A 75-turn, 10.0 cm diameter coil rotates at an...Ch. 23 - (a) If the emf of a coil rotating in a magnetic...Ch. 23 - Unreasonable Results A 500-turn coil with a 0.250...Ch. 23 - Suppose a motor connected to a 120 V source draws...Ch. 23 - A motor operating on 240 V electricity has a 180 V...Ch. 23 - What is the back emf of a 120 V motor that draws...Ch. 23 - The motor in a toy car operates on 6.00 V....Ch. 23 - Integrated Concepts The motor in a toy car is...Ch. 23 - A plug—in transformer, like that in Figure 23.29,...Ch. 23 - An American traveler in New Zealand carries a...Ch. 23 - A cassette recorder uses a plug-in transformer to...Ch. 23 - (a) What is the voltage output of a transformer...Ch. 23 - (a) The plug-in transformer for a laptop computer...Ch. 23 - A multipurpose transformer has a secondary coil...Ch. 23 - A large power plant generates electricity at 12.0...Ch. 23 - If the power output in the previous problem is...Ch. 23 - Unreasonable Results The 335 kV AC electricity...Ch. 23 - Construct Your Own Problem Consider a double...Ch. 23 - Integrated Concepts A short circuit to the...Ch. 23 - Two coils are placed close together in a physics...Ch. 23 - If two coils placed next to one another have a...Ch. 23 - The 4.00 A current through a 7.50 mH inductor is...Ch. 23 - A device is turned on and 3.00 A flows through it...Ch. 23 - Starting with emf2=MI1t, show that the units of...Ch. 23 - Camera flashes charge a capacitor to high voltage...Ch. 23 - A large research solenoid has a self-inductance of...Ch. 23 - (a) Calculate the self-inductance of a 50.0 cm...Ch. 23 - A precision laboratory resistor is made of a coil...Ch. 23 - The healing coils in a hair dryer are 0.800 cm in...Ch. 23 - When the 20.0 A current through an inductor is...Ch. 23 - How fast can the 150 A current through a 0.250 H...Ch. 23 - Integrated Concepts A very large, superconducting...Ch. 23 - Unreasonable Results A 25.0 H inductor has 100 A...Ch. 23 - It you want a characteristic RL time constant of...Ch. 23 - Your RL circuit has a characteristic time constant...Ch. 23 - A large superconducting magnet, used for magnetic...Ch. 23 - Verify that alter a time of 10.0 ms, the current...Ch. 23 - Suppose you have a supply of inductors ranging...Ch. 23 - (a) What is the characteristic time constant of a...Ch. 23 - What percentage of the final current I0 flows...Ch. 23 - The 5.00 A current through a 1.50 H inductor is...Ch. 23 - (a) Use the exact exponential treatment to find...Ch. 23 - (a) Using the exact exponential treatment, find...Ch. 23 - At what frequency will a 30.0 mH inductor have a...Ch. 23 - What value of inductance should be used if a 20.0...Ch. 23 - What capacitance should be used to produce a 2.00...Ch. 23 - At what frequency will an 80.0 mF capacitor have a...Ch. 23 - (a) Find me current through a 0.500 H inductor...Ch. 23 - (a) What current flows when a 60.0 Hz, 480 V AC...Ch. 23 - A 20.0 kHz, 16.0 V source connected to an inductor...Ch. 23 - A 20.0 HZ, 16.0 V source produces a 2.00 mA...Ch. 23 - (a) An inductor designed to filter high-frequency...Ch. 23 - The capacitor in Figure 23.55(a) is designed to...Ch. 23 - The capacitor in Figure 23.55(b) will filler...Ch. 23 - Unreasonable Results In a recording of voltages...Ch. 23 - Construct Your Own Problem Consider the use of an...Ch. 23 - An RL circuit consists of a 40.0 (resistor and a...Ch. 23 - An RC circuit consists of a 40.0 (resistor and a...Ch. 23 - An LC circuit consists of a 3.00 mH inductor and a...Ch. 23 - What is the resonant frequency of a 0.500 mH...Ch. 23 - To receive AM radio, you want an RLC circuit that...Ch. 23 - Suppose you have a supply of inductors ranging...Ch. 23 - What capacitance do you need to produce a resonant...Ch. 23 - What inductance do you need to produce a resonant...Ch. 23 - The lowest frequency in the FM radio band is 88.0...Ch. 23 - An RLC series circuit has a 2.50 (resistor, a 100...Ch. 23 - An RLC series circuit hag a 1.00 k(register, a 150...Ch. 23 - An RLC series circuit has a 2.50 (resistor, a 100...Ch. 23 - An RLC series circuit has a 1.00 k(resistor, a...Ch. 23 - An RLC series circuit has a 200 (resistor and a...Ch. 23 - Referring to Example 23.14, find the average power...Ch. 23 - Prob. 1TPCh. 23 - Prob. 2TPCh. 23 - Prob. 3TPCh. 23 - Prob. 4TPCh. 23 - Prob. 5TPCh. 23 - Prob. 6TPCh. 23 - Prob. 7TPCh. 23 - Prob. 8TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Two parents plan to have three children. What is the probability that the children will be two girls and one bo...
Genetic Analysis: An Integrated Approach (3rd Edition)
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology in Focus (2nd Edition)
1. What are the main organs of the skeletal system?
Human Anatomy & Physiology (2nd Edition)
Given the end results of the two types of division, why is it necessary for homologs to pair during meiosis and...
Concepts of Genetics (12th Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- . The generator at a large power plant has an output of 1,000,000 kW at 24,000 V. (a) If it were a DC generator, what would he the current in it? (b) What is its energy output each day—in joules and in kilowatt—hours? (c) If this energy is sold at a price of 10 cents per kilowatt-hour, how much revenue does the power plant generate each day?arrow_forward(a) What is the speed of a supersonic aircraft with a 17.0-m wingspan, if it experiences a 1.60V Hall voltage between its wing lips when in level flight over the north magnetic pole, where the Earth's field strength is 8.00105T ? (b) Explain why very little current flows as a result of this Hall voltage.arrow_forwardIt has been proposed that extending a long conducting wire from a spacecraft (a "tether") could be used for a variety of applications, from navigation to power generation. One of the first such experiments involving this technique was an August 1992 space shuttle flight, but the tether failed and only only 250 m of the conducting wire could be let out. A 40.0 V motional emf was generated in the Earth’s 5.0 × 10-5 T field, while the shuttle and tether were moving at 7.80 × 103 m/s. What was the angle (in degrees) between the shuttle’s velocity and the Earth’s field?arrow_forward
- Ck H 4 ← 1 Q A Z O8 https://www.webassign.net/web/Student/Assignment-Responses/submit?dep=32014984&tags=autosave#Q4 目☆ At what speed (in meters per second) must the sliding rod in the figure below move to produce an emf of 1.00 V in a 1.65 T field directed perpendicular to the rods and into the page, given the rod's length is 28.5 cm? C 078²9 alt 2 W S m/s # "3. th G E D Application of Lenz's law Ⓡ C ® Ⓡ ® ® 5 Ⓡ Ⓡ Ⓡ Ⓡ RO B. Ⓡ & 8 8 ® R 4 R F RHR-2 O O ® V ® % Ⓡ Ⓡ Ⓡ O OB O 8 5 B₂ T H Q Search G 8 Ⓡ B O 8 8 Ax+ O AA= (AX Ⓡ @ 3R #Equivalent circuit Ⓡ Ⓒincreasing NO 6 Ⓡ 8 @ Y 8 H @ -0 & 8 & 7 AHR-1 L Pie U 12 J N 8 M 1 K ( < 9 O alt PO 72x@ لالالالال ctri ? 1 " + Protect your privacy with and Fingerprint Reader "prt sc pause 1 4 backspace ME delete for those on-the-go 1 enter HP ENVY x360 Get more done with the latest Intel® Core™ processor. t shift home lock 4 hp 1 end BANG & OLUFSEN 3-way micro-edge display Audio by Bang & Olufsen end 1 8 5 O 2 ** BANG & OLUFSEN py up 6:31 PM 7/3/2023 A…arrow_forwardHow do you solve this question? The first question's answer is c) 3.0 T but I can't seem to get the right answer if I attempt use the equation emf = (BA)/t. Is t 1.25, 5, or something else?arrow_forwardIn the August 1992 space shuttle flight, only 250 m of the conducting tether considered could be let out. A 40.0 V motional emf was generated in the Earth’s 5.00×10−5 T field, while moving at 7.80×103 m/s . What was the angle between the shuttle’s velocity and the Earth’s field, assuming the conductor was perpendicular to the field?arrow_forward
- In the August 1992 space shuttle flight, only 250 m of theconducting tether considered in Example 23.2 could be letout. A 40.0 V motional emf was generated in the Earth’s5.00×10−5 T field, while moving at 7.80×103 m/s . Whatwas the angle between the shuttle’s velocity and the Earth’sfield, assuming the conductor was perpendicular to the field?arrow_forwardAt what speed must the sliding rod in the figure below move to produce an emf of 1.20 V in a 1.43 T field, given the rod’s length is 30.0 cm? Thank you in advance.arrow_forwardSuppose that the light bulb in Figure 22.4b is a 60.0-W bulb with a resistance of 287 Ω. The magnetic field has a magnitude of 0.785 T, and the length of the rod is 1.02 m. The only resistance in the circuit is that due to the bulb. What is the shortest distance along the rails that the rod would have to slide for the bulb to remain lit for one-half second?arrow_forward
- The 12.0 cm long rod as shown moves at 4.00 m/s.What is the strength of the magnetic field if a 95.0 V emf isinduced?arrow_forwardAn 820-turn wire coil of resistance 24.0 V is placed on top of a 12 500-turn, 7.00-cm-long solenoid, as in Figure P20.57. Both coil and solenoid have crosssectional areas of 1.00 × 10-4 m2 . (a) How long does it take the solenoid current to reach 0.632 times its maximum value? (b) Determine the average back emf caused by the self-inductance of the solenoid during this interval. The magnetic field produced by the solenoid at the location of the coil is one-half as strong as the field at the center of the solenoid. (c) Determine the average rate of change in magnetic flux through each turn of the coil during the stated interval. (d) Find the magnitude of the average induced current in the coil.arrow_forwardYou are camping in the wilderness. After a few days, you are horrified to discover that you did not pack as many batteries as you had planned, and you have no working batteries for your lights at night. Rummaging through the spare parts in the back of your truck, you find an old motor. On the plate, the information claims that the motor operates from 120 v, rotating at 1,600 rev/min, with an average back emf of 55.0 V. You wish to use the motor as a generator to provide a voltage with a peak value of 8.00 V to operate your electric lantern. You attach a hand crank to the armature of the motor. You need to determine the angular speed (in rev/s) at which you must rotate the crank to provide the desired voltage. Model the armature as a flat coil of wire. Notice that the average back emf is provided, not the peak value, so you will need to find an expression for the average back emf of a motor in terms of parameters associated with the armature. rev/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY