Concept explainers
(a)
Interpretation:
The mass percent of C, H and O in cellulose needs to be determined.
Concept introduction:
Cellulose is present in plant cell wall and is a polysaccharide consists of several glucose units bind together.
Mass percent of an atom present in the sample can be determined by dividing mass of atoms present in the monomer to the overall mass of the monomer unit and multiplying the overall result with 100%.
For example, the mass percent of x g of an atom present in the y g of monomer unit can be determined as:
Answer to Problem 17QAP
Mass percent of C in
Mass percent of H in polymer is 7.66 %.
Mass percent of O in polymer is 54.34 %.
Explanation of Solution
Cellulose is a polyssaccharide which consists of several units of glucose joined through glycosidic linkage.
Molecular formula of glucose is C6 H12 O5.
Molar mass of monomer unit glucose in cellulose can be calculated as follows:
Putting the values,
There are 6 C in a monomer unit of cellulose.
Now, molar mass of C in a monomer
Thus, the mass percent of C can be calculated as:
Putting the values,
Thus, mass percent of C in polymer is 42.46 %.
There are 12 H in a monomer unit of cellulose.
Now, molar mass of H in a monomer
Mass percent of H can be calculated as follows:
Putting the values,
Thus, mass percent of H in polymer is 7.66 %.
There are 6 O in a monomer unit of cellulose.
Now, molar mass of O in a monomer
The mass percent of O can be calculated as:
Putting the values,
Thus, mass percent of O in polymer is 54.34 %.
(b)
Interpretation:
The molar mass of the cellulose needs to be determined.
Concept introduction:
Cellulose is present in plant cell wall and is a polysaccharide consists of several glucose units in it.
The molar mass of any compound can be calculated by taking sum of molar masses of all the atoms present in that compound.
For a molecular formula of compound Cx Hy Oz, the molar mass can be calculated as follows:
Molar mass of compound = (Number of C)
Answer to Problem 17QAP
Molar mass of cellulose is
Explanation of Solution
The molecular formula of glucose is C6 H12 O6 which is linked with other glucose molecule through glycosidic linkage to form polysaccharides. The cellulose molecule is formed from the linkage of more than 100 glucose units.
Cellulose is a polyssaccharide which consists of several units of glucose joined through glycosidic linkage.
Molecular formula of glucose is C6 H12 O6
Thus, its molar mass can be calculated as follows:
Molar mass of monomer unit glucose in cellulose = (Number of C)
Putting the values,
Now,
Molar mass of cellulose = 10000
Thus, the molar mass of cellulose will be:
Thus, the molar mass of cellulose is
Want to see more full solutions like this?
Chapter 23 Solutions
PRINCIPLES+REACTIONS
- A package contains 1.33lbs of ground round. If it contains 29% fat, how many grams of fat are in the ground? arrow_forwardHow is the resonance structure formed to make the following reaction product. Please hand draw the arrows showing how the electrons move to the correct position. Do not use an AI answer. Please draw it yourself or don't bother.arrow_forwardPart II Calculate λ max of the following compounds using wood ward- Fiecer rules a) b) c) d) e) OH OH dissolved in dioxane Br Br dissolved in methanol. NH₂ OCH 3 OHarrow_forward
- 6. Match each of the lettered items in the column on the left with the most appropriate numbered item(s) in the column on the right. Some of the numbered items may be used more than once and some not at all. a. Z = 37 1. b. Mn 2. C. Pr element in period 5 and group 14 element in period 5 and group 15 d. S e. [Rn] 7s¹ f. d block metal 3. highest metallic character of all the elements 4. paramagnetic with 5 unpaired electrons 5. 4f36s2 6. isoelectronic with Ca²+ cation 7. an alkaline metal 8. an f-block elementarrow_forwardDraw all formal charges on the structures below as is and draw 1 resonance structure that is more stable.arrow_forwardPart II. xiao isolated a compound TAD (Ca H 10 N₂) from tobacco and obtained its IR spectrum. Xiao proposed a chemical structure shown below: % Transmittance 4000 3500 3000 2500 2000 Wavenumber (cm-1) 1500 1000 (a) Explain why her proposed structure is inconsistent with the IR spectrum obtained (b) TAD exists as a tautomer of the structure xiao proposed. Draw the structure and explain why it is more compatible with the obtained spectrum. (C) what is the possible source for the fairly intense signal at 1621cm1arrow_forward
- AE>AE₁ (Y/N) AE=AE₁ (Y/N) AEarrow_forwardTreatment of 2-phenylpropan-2-amine with methyl 2,4-dibromobutanoate in the presence of a nonnucleophilic base, R3N, involves two successive SN2 reactions and gives compound A. ? NH2 Br Br Propose a structural formula for compound A. You do not have to explicitly draw H atoms. You do not have to consider stereochemistry. In cases where there is more than one answer, just draw one. R3N C14H19NO2 + 2 R3NH*Br Aarrow_forwardCorrectly name this compound using the IUPAC naming system by sorting the components into the correct order. Br IN Ν Harrow_forwardHow is the radical intermediate for this structure formed? Can you please draw arrows from the first radical to the resonance form that would result in this product? I'm lost.arrow_forwardPart VI. (a) calculate the λ max of the compound using woodward - Fieser rules. (b) what types of electronic transitions are present in the compound? (c) what are the prominent peaks in the IR spectrum of the compound?arrow_forwardDon't used Ai solutionarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning