Concept explainers
A parallel-plate capacitor consists of two square plates, size
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
- Suppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = αe-r/a0 + β/r + b0 where alpha (α), beta (β), a0 and b0 are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: Calculating the antiderivative or indefinite integral , Vab = (-αa0e-r/a0 + β + b0 ) By definition, the capacitance C is related to the charge and potential difference by: C = / Evaluating with the upper and lower limits of integration for Vab, then simplifying: C = Q / ( (e-rb/a0 - e-ra/a0) + β ln() + b0 () )arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = αe-r/a0 + β/r + b0 where alpha (α), beta (β), a0 and b0 are constants. Find an expression for its capacitance.arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = αe-r/a0 + β/r + b0 where alpha (α), beta (β), a0 and b0 are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by:arrow_forward
- To see why charge density and electric field are larger at the sharp corners of a conductor, consider two metal spheres of radii, r1 = R and r2 = 12.5R, both charged to the same potential, V0. What is the ratio η1/η2? of their surface charge densities? What is the ratio E1/E2? of their of the electric field strengths at their surfaces?arrow_forwardThere are point loads ,Q1 = 5, Q2 = 8 and Q3 = 6 at points A(-8,0), O(0,0) and B (6,0) in the OXY plane, respectively. Write the value of the x-component of the electric field in ke numerically at the point P(0, 10) on the-axis.arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the functionarrow_forward
- Suppose the field in the interface region of a photovoltaic panel is 1.1 × 106 N/C. Modeling the interface as a parallel-plate capacitor, what is the charge density o on either side of the interface?arrow_forwardA very long line charge having a charge density λ is surrounded by a conducting cylindrical shell with inner radius ri = 5.92 cm and outer radius ro = 7cm as shown in the figure. System is in electrostatic equilibrium condition. What would be the electric potential difference AV = V(r= 0.8 cm) - V(r= 6.2 cm) ? Provide your answer in terms of Ak with 2 significant figures.arrow_forwardEach plate of an ideal air-filled parallel-plate capacitor has an area of 1,424 mm² and the separation of the plates is 0.076 mm. An electric field of 2.610 x 106 V/m is present between the plates. What is the surface charge density on the plates? (ε = 8.85 × 10-12 C²/N·m²) Give your answer in µC/m².arrow_forward
- Suppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function:arrow_forwardAn isolated conducting sphere has a charge q of 1.5 µC. Its radius R is 6.5 cm. (a) How much PE is stored in the electric field of this charged conductor? (b) What is the energy density at the surface of the sphere?arrow_forwardHW1: Region y 0 is a dielectric medium (€,-1 = 2). If there is a surface charge of p, = 2 n on the conductor, determine E and D at (a) A (3,-2,2) (b) B (-4,1,5)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning