Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22.2, Problem 35P
To determine
The natural period of vibration of the sphere.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The system is in equilibrium in the position. Find the period of vibration for small amplitudes. Neglect the mass of the rod and size of the 1.8 kg. mass.
Given
Required
Solution
Determine a natural frequency of vibration as a function of k₁, k₂. g and W of a spring-mass system placed on a inclined plane as shown in the figure:
The uniform beam is supported at its ends by two springs
A and B, each having the same stiffness k. When nothing is
supported on the beam, it has a period of vertical vibration
of 0.83 s. If a 50-kg mass is placed at its center, the period
of vertical vibration is 1.52 s. Compute the stiffness of each
spring and the mass of the beam.
Ok k = 305 N/m and mB
Ok
k = 408 N/m and mB
k = 609 N/m and mB = 2
n
-
-
O10 11 11Ն ՆԱ B
1
=
ह
Chapter 22 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 22.1 - A spring is stretched 175 mm by an 8-kg block. If...Ch. 22.1 - Prob. 2PCh. 22.1 - A spring is stretched 200 mm by a 15-kg block. If...Ch. 22.1 - When a 20-lb weight is suspended from a spring,...Ch. 22.1 - Prob. 5PCh. 22.1 - Prob. 6PCh. 22.1 - Prob. 7PCh. 22.1 - Prob. 8PCh. 22.1 - A 3-kg block is suspended from a spring having a...Ch. 22.1 - Prob. 10P
Ch. 22.1 - Prob. 11PCh. 22.1 - 22-12. Determine the natural period of vibration...Ch. 22.1 - The body of arbitrary shape has a mass m, mass...Ch. 22.1 - Determine the torsional stiffness k, measured in...Ch. 22.1 - Prob. 15PCh. 22.1 - Prob. 16PCh. 22.1 - If the natural periods of oscillation of the...Ch. 22.1 - Prob. 18PCh. 22.1 - Prob. 19PCh. 22.1 - A uniform board is supported on two wheels which...Ch. 22.1 - If the wire AB is subjected to a tension of 20 lb,...Ch. 22.1 - The bar has a length l and mass m. It is supported...Ch. 22.1 - The 20-kg disk, is pinned at its mass center O and...Ch. 22.1 - Prob. 24PCh. 22.1 - If the disk in Prob. 22-24 has a mass of 10 kg,...Ch. 22.1 - Prob. 26PCh. 22.1 - Prob. 27PCh. 22.1 - Prob. 28PCh. 22.1 - Prob. 29PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Prob. 33PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Prob. 35PCh. 22.2 - Prob. 36PCh. 22.2 - Prob. 37PCh. 22.2 - Prob. 38PCh. 22.2 - Prob. 39PCh. 22.2 - If the slender rod has a weight of 5 lb, determine...Ch. 22.6 - If the block-and-spring model is subjected to the...Ch. 22.6 - Prob. 42PCh. 22.6 - A 4-lb weight is attached to a spring having a...Ch. 22.6 - Prob. 44PCh. 22.6 - Prob. 45PCh. 22.6 - Prob. 46PCh. 22.6 - Prob. 47PCh. 22.6 - Prob. 48PCh. 22.6 - Prob. 49PCh. 22.6 - Prob. 50PCh. 22.6 - The 40-kg block is attached to a spring having a...Ch. 22.6 - The 5kg circular disk is mounted off center on a...Ch. 22.6 - Prob. 53PCh. 22.6 - Prob. 54PCh. 22.6 - Prob. 55PCh. 22.6 - Prob. 56PCh. 22.6 - Prob. 57PCh. 22.6 - Prob. 58PCh. 22.6 - Prob. 59PCh. 22.6 - The 450-kg trailer is pulled with a constant speed...Ch. 22.6 - Prob. 61PCh. 22.6 - Prob. 62PCh. 22.6 - Prob. 63PCh. 22.6 - The spring system is connected to a crosshead that...Ch. 22.6 - Prob. 65PCh. 22.6 - Prob. 66PCh. 22.6 - Prob. 67PCh. 22.6 - The 200-lb electric motor is fastened to the...Ch. 22.6 - Prob. 69PCh. 22.6 - If two of these maximum displacements can be...Ch. 22.6 - Prob. 71PCh. 22.6 - Prob. 72PCh. 22.6 - Prob. 73PCh. 22.6 - Prob. 74PCh. 22.6 - Prob. 75PCh. 22.6 - Prob. 76PCh. 22.6 - Prob. 77PCh. 22.6 - Prob. 78PCh. 22.6 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- m Base The response for the block is a sine harmonic function and its amplitude is 0.458 m The response for the block is a cosine harmonic function and its amplitude is 0.019 m The response for the block is a cosine harmonic function and its amplitude is 1.56 m The response for the block is a cosine harmonic function and its amplitude is 0.119 marrow_forwardThe 23-kg disk, is pinned at its mass center O and supports the 3-kg block A. The belt which passes over the disk is not allowed to slip at its contacting surface. Determine the natural period of vibration of the system.arrow_forwardDetermine the natural frequency fn of vertical oscillations of the cylinder of mass m. The mass and friction of the stepped drum are negligible. 2r m k EVE k m 1 k m 1 2k m 2k marrow_forward
- A block having a weight of 8 lb is suspended from a spring having a stiffness k = 40 Ib/ft. If the block is pushed y = 0.4 ft upward from its equilibrium position and then released from rest. What is the amplitude of the vibration? Assume that positive displacement is downwardarrow_forwardA 2-lb weight is suspended from a spring having a stiffness k = 2 lb/in. If the weight is pushed 1 in. upward from its equilibrium position and then released from rest, determine the equation which describes the motion. What is the amplitude and the natural frequency of the vibration?arrow_forwardThe homogeneous disk, of mass-6Kg and radius R-1 m, rolls without slipping over the surface. The system has two springs of constant k-4500N/m and a damper of constant c= 110 Ns/m.. If the system is vibrating with an initial amplitude of 0.2 m, find the frequency of vibration of the system. Show your work. O 19.1 rad/s O 21.7 rad/s O 16.9 rad/s O 146 rad/s Cylinder, mass m ►x(t) k k R C Pure rollingarrow_forward
- The 0.2 kg mass is suspended from a rigid frame. Pin A at the end ofarm OA engages a slot in the frame, causing the frame to oscillate in the verticaldirection as the arm turns. If the angular velocity of OA is ω=35 rad/s, determinethe amplitude of the steady-state vibration of the weight relative to the frame.arrow_forwardWhile standing in an elevator, the man holds a pendulum which consists of an 18-in. cord and a 0.5-lb bob. If the elevator is descending with an acceleration a = 4 ft/s2, determine the natural period of vibration for small amplitudes of swing.arrow_forwardThe 23-kgkg disk, is pinned at its mass center OO and supports the 5-kgkg block AA. The belt which passes over the disk is not allowed to slip at its contacting surface. Determine the natural period of vibration of the system.arrow_forward
- A smooth disk with a mass of 3 kg is placed on a cylindrical surface.It can move without slipping. This cylinder has a mass of 2 kgproperly connected to the AB bar at its midpoint. AB bar is also middleIt is connected to a spring with a constant k = 300 N/m. EUrod can move freely around point A. Boccurs when the tip is given a small displacement and released.Calculate the period of the vibration.arrow_forwardAn electric motor with a mass of 20 kg is placed in the middle of a beam that is jointly connected on both sides. Rotor its unbalance is equivalent to a mass of 0.3 kg at a distance of 0.020 m from the axis of rotation. Due to the electric motor force acting on the beam t Sin F F 0 . The rotor is rotating at an angular speed of = 40 rad / sec. Engine under the influence of force Find the displacement amplitude at the point where it is located (in the middle). The beam mass will be neglected. The beam has a modulus of elasticity E = 200000000000 N / m2 (200 GPa).arrow_forwardA block having a weight of 8 lb is suspended from a spring having a stiffness k = 40 Ib/ft. If the block is pushed y = 0.2 ft upward from its equilibrium position and then released from rest. What is the natural frequency of the vibration? Assume that positive displacement is downward.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Undamped Free Vibration of SDOF (1/2) - Structural Dynamics; Author: structurefree;https://www.youtube.com/watch?v=BkgzEdDlU78;License: Standard Youtube License