Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22.1, Problem 11P
To determine
The natural period of vibration for small amplitudes of swing.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The turbine rotor of a ship weighs 200 kN has a
radius of gyration of 0.8 m. If the ship pitches
with simple harmonic motion having amplitude
of 8 degrees and time period of 15 seconds,
determine the maximum couple that tends to
shear the holding down bolts of the turbine.
Also determine the maximum acceleration of
the ship during pitching.
The passenger car is modeled on a quarter-car model, in which case each wheel has a mass of 390 kg, in which case the specific frequency of the body is 1.1 Hz. The car is in a vibration tester that makes a vertical motion with an amplitude of 6 mm at a frequency of 6 Hz. Assume that D = 0. Calculate the maximum acceleration of the car body to one decimal place.
A simple pendulum is pivoted at O and is free to swing in the vertical plane of the plate. If the plate is given a constant acceleration a =
2.7 m/s? up the incline e = 26°, find the steady angle ß assumed by the pendulum after all initial start-up oscillations have ceased.
Neglect the mass of the slender supporting rod.
Answer: B = i
Chapter 22 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 22.1 - A spring is stretched 175 mm by an 8-kg block. If...Ch. 22.1 - Prob. 2PCh. 22.1 - A spring is stretched 200 mm by a 15-kg block. If...Ch. 22.1 - When a 20-lb weight is suspended from a spring,...Ch. 22.1 - Prob. 5PCh. 22.1 - Prob. 6PCh. 22.1 - Prob. 7PCh. 22.1 - Prob. 8PCh. 22.1 - A 3-kg block is suspended from a spring having a...Ch. 22.1 - Prob. 10P
Ch. 22.1 - Prob. 11PCh. 22.1 - 22-12. Determine the natural period of vibration...Ch. 22.1 - The body of arbitrary shape has a mass m, mass...Ch. 22.1 - Determine the torsional stiffness k, measured in...Ch. 22.1 - Prob. 15PCh. 22.1 - Prob. 16PCh. 22.1 - If the natural periods of oscillation of the...Ch. 22.1 - Prob. 18PCh. 22.1 - Prob. 19PCh. 22.1 - A uniform board is supported on two wheels which...Ch. 22.1 - If the wire AB is subjected to a tension of 20 lb,...Ch. 22.1 - The bar has a length l and mass m. It is supported...Ch. 22.1 - The 20-kg disk, is pinned at its mass center O and...Ch. 22.1 - Prob. 24PCh. 22.1 - If the disk in Prob. 22-24 has a mass of 10 kg,...Ch. 22.1 - Prob. 26PCh. 22.1 - Prob. 27PCh. 22.1 - Prob. 28PCh. 22.1 - Prob. 29PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Prob. 33PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Prob. 35PCh. 22.2 - Prob. 36PCh. 22.2 - Prob. 37PCh. 22.2 - Prob. 38PCh. 22.2 - Prob. 39PCh. 22.2 - If the slender rod has a weight of 5 lb, determine...Ch. 22.6 - If the block-and-spring model is subjected to the...Ch. 22.6 - Prob. 42PCh. 22.6 - A 4-lb weight is attached to a spring having a...Ch. 22.6 - Prob. 44PCh. 22.6 - Prob. 45PCh. 22.6 - Prob. 46PCh. 22.6 - Prob. 47PCh. 22.6 - Prob. 48PCh. 22.6 - Prob. 49PCh. 22.6 - Prob. 50PCh. 22.6 - The 40-kg block is attached to a spring having a...Ch. 22.6 - The 5kg circular disk is mounted off center on a...Ch. 22.6 - Prob. 53PCh. 22.6 - Prob. 54PCh. 22.6 - Prob. 55PCh. 22.6 - Prob. 56PCh. 22.6 - Prob. 57PCh. 22.6 - Prob. 58PCh. 22.6 - Prob. 59PCh. 22.6 - The 450-kg trailer is pulled with a constant speed...Ch. 22.6 - Prob. 61PCh. 22.6 - Prob. 62PCh. 22.6 - Prob. 63PCh. 22.6 - The spring system is connected to a crosshead that...Ch. 22.6 - Prob. 65PCh. 22.6 - Prob. 66PCh. 22.6 - Prob. 67PCh. 22.6 - The 200-lb electric motor is fastened to the...Ch. 22.6 - Prob. 69PCh. 22.6 - If two of these maximum displacements can be...Ch. 22.6 - Prob. 71PCh. 22.6 - Prob. 72PCh. 22.6 - Prob. 73PCh. 22.6 - Prob. 74PCh. 22.6 - Prob. 75PCh. 22.6 - Prob. 76PCh. 22.6 - Prob. 77PCh. 22.6 - Prob. 78PCh. 22.6 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A simple pendulum is pivoted at O and is free to swing in the vertical plane of the plate. If the plate is given a constant acceleration a = 3.7 m/s2 up the incline 0 = 34°, find the steady angle B assumed by the pendulum after all initial start-up oscillations have ceased. Neglect the mass of the slender supporting rod.arrow_forwardA physical pendulum starts moving from a position in which its center of mass is directly above the suspension point. The pendulum swings passing its equilibrium point with angular velocity ω. Neglecting any friction, find the period of small oscillations of the pendulum. (Note: the period of small oscillations need not be the same as the period of a large-amplitude oscillation described).arrow_forwardA simple pendulum is pivoted at O and is free to swing in the vertical plane of the plate. If the plate is given a constant acceleration a = 4.2 m/s2 up the incline θ = 30°, find the steady angle β assumed by the pendulum after all initial start-up oscillations have ceased. Neglect the mass of the slender supporting rod.arrow_forward
- For a 15 kg mass, a 300 N/m stiffness spring is used. An initial 60-centimeter displacement is applied to the mass, starting from equilibrium. As soon as it was let go, it began oscillating against a smooth surface. Find the position, velocity and acceleration at t = 4s.arrow_forwardA car of mass 1300kg is constructed using a frame supported by four springs and a dash-pot with a damping 5% of critical. Each spring has a force constant 20 000N/m. If the combined mass of four people in a car is 350kg, determine the period of execution of two complete vibrations in seconds. And then calculate the vertical acceleration experienced by the occupants at t=0.5s, given the initial displacement and velocity are 0 mm and 1 m/s respectively.arrow_forwardIn the equilibrium position, the 30 kg cylinder causes a static deflection of [60] mm in the coiled spring. If the cylinder is depressed an additional [45] mm and released from rest, calculate: The position , velocity and acceleration of the cylinder at t = 1.2 s.arrow_forward
- The instrument of mass 50 kg is meant for impact on a surface. The impact velocity 10m/sec. Inside the mounting the system has a stiffness of 5 N/m and C=1 Ns/m . find maximum displacement of the instrument afterr engaging the spring and damperarrow_forwardThe position of the small 0.68-kg blocks in the smooth radial slots in the disk which rotates about a vertical axis at O is used to activate a speed-control mechanism. If each block moves from r = 162 mm to r = 200 mm while the speed of the disk changes slowly from 272 rev/min to 382 rev/min, design the spring by calculating the spring constant k of each spring. The springs are attached to the inner ends of the slots and to the blocks.arrow_forwardThe 35-lb block is attached to two springs having a stiffness of k = 14 lb/ft . A periodic force F=(8cos3t)lb, where t is in seconds, is applied to the block. Determine the maximum speed of the block after frictional forces cause the free vibrations to dampen out.arrow_forward
- Determine the natural frequency fn of vertical oscillations of the cylinder of mass m. The mass and friction of the stepped drum are negligible. 2r m k EVE k m 1 k m 1 2k m 2k marrow_forwardB9arrow_forward5. Find the expression for the motion of mass B as a function of the bar angle (theta). Plot the displacement of member B with respect to the angle of the member for r=1m. Barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Undamped Free Vibration of SDOF (1/2) - Structural Dynamics; Author: structurefree;https://www.youtube.com/watch?v=BkgzEdDlU78;License: Standard Youtube License