Beginning Statistics, 2nd Edition
Beginning Statistics, 2nd Edition
2nd Edition
ISBN: 9781932628678
Author: Carolyn Warren; Kimberly Denley; Emily Atchley
Publisher: Hawkes Learning Systems
Question
Book Icon
Chapter 2.2, Problem 9E

(a)

To determine

To graph:

A histogram for the given data.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Braking Times for Vehicles at 60 mph (in Minutes)
Class Frequency
0.05-0.07 12
0.08-0.10 15
0.11-0.13 14
0.14-0.16 15
0.17-0.19 14

Formula used:

Class mid-point =upperlimitofclass+lowerlimitofclass2

p=lowerlimitofsuccedingclassupperlimitoftheclass2

For adjustment of class boundaries subtract p from lower limit and p with upper limit of each class.

Calculation:

Compute the class mid-point of each class.

For the class 0.05-0.07,

Class mid‐point=upper limit of class+lower limit of class2 =0.05+0.072 =0.06

For the class 0.08-0.10,

Class mid‐point=upper limit of class+lower limit of class2 =0.08+0.102 =0.09

For the class 0.11-0.13,

Class mid‐point=upper limit of class+lower limit of class2 =0.11+0.132 =0.12

For the class 0.14-0.16,

Class mid‐point=upper limit of class+lower limit of class2 =0.14+0.162 =0.15

For the class 0.17-0.19,

Class mid‐point=upper limit of class+lower limit of class2 =0.17+0.192 =0.18

Calculate the adjustment factor.

p=0.080.072 =0.012 =0.005

Construct the table with adjusted class boundary and class mid-point.

Braking Times for Vehicles at 60 mph (in Minutes)
Class boundary Mid-point Frequency
0.045-0.075 0.06 12
0.075-0.105 0.09 15
0.105-0.135 0.12 14
0.135-0.165 0.15 15
0.165-0.195 0.18 14

Table 1

Graph:

Construct the histogram corresponding to the table 1.

Beginning Statistics, 2nd Edition, Chapter 2.2, Problem 9E , additional homework tip  1

Figure 1

Interpretation:

Figure 1 represents the histogram for the given data.

Statistics Concept Introduction

A histogram is a bar graph of a frequency distribution of quantitative data.

Put classes along x-axis and frequency along y-axis. Mark class mid- point of every class along x-axis. The width of each bar represents the width of each class. Width of each class should be same and each bar should touch each other.

(b)

To determine

To calculate:

The relative frequency for each class.

(b)

Expert Solution
Check Mark

Answer to Problem 9E

Solution:

Required relative frequency table is,

Class Relative Frequency
0.05-0.07 17%
0.08-0.10 21%
0.11-0.13 20%
0.14-0.16 21%
0.17-0.19 20%

Explanation of Solution

Given information:

Braking Times for Vehicles at 60 mph (in Minutes)
Class Frequency
0.05-0.07 12
0.08-0.10 15
0.11-0.13 14
0.14-0.16 15
0.17-0.19 14

Formula used:

Relative Frequency

=fn

n=sumoffrequenciesf=frequencyfortheclass

Calculation:

Compute n:.

n=12+15+14+15+14=70

Compute relative frequencies for each class in the following table.

Class Frequency Relative Frequency
0.05-0.07 12 fn=12700.17=17%
0.08-0.10 15 fn=15700.21=21%
0.11-0.13 14 fn=1470=0.2=20%
0.14-0.16 15 fn=15700.21=21%
0.17-0.19 14 fn=1470=0.2=20%

Table 2

Conclusion:

Thus, the required relative frequency table is,

Class Relative Frequency
0.05-0.07 17%
0.08-0.10 21%
0.11-0.13 20%
0.14-0.16 21%
0.17-0.19 20%

(c)

To determine

To graph:

A relative frequency histogram for the given data.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Class Frequency Relative Frequency
0.05-0.07 12 17%
0.08-0.10 15 21%
0.11-0.13 14 20%
0.14-0.16 15 21%
0.17-0.19 14 20%

Formula used:

Class mid-point =upperlimitofclass+lowerlimitofclass2

p=lowerlimitofsuccedingclassupperlimitoftheclass2

For adjustment of class boundaries subtract p from lower limit and p with upper limit of each class.

Calculation:

Compute the class mid-point of each class.

For the class 0.05-0.07,

Class mid‐point=upper limit of class+lower limit of class2 =0.05+0.072 =0.06

For the class 0.08-0.10,

Class mid‐point=upper limit of class+lower limit of class2 =0.08+0.102 =0.09

For the class 0.11-0.13,

Class mid‐point=upper limit of class+lower limit of class2 =0.11+0.132 =0.12

For the class 0.14-0.16,

Class mid‐point=upper limit of class+lower limit of class2 =0.14+0.162 =0.15

For the class 0.17-0.19,

Class mid‐point=upper limit of class+lower limit of class2 =0.17+0.192 =0.18

Calculate the adjustment factor.

p=0.080.072 =0.012 =0.005

Construct the table with adjusted class boundary and class mid-point.

Braking Times for Vehicles at 60 mph (in Minutes)
Class boundary Mid-point Relative Frequency
0.045-0.075 0.06 17%
0.075-0.105 0.09 21%
0.105-0.135 0.12 20%
0.135-0.165 0.15 21%
0.165-0.195 0.18 20%

Table 3

Graph:

Construct the relative frequency histogram corresponding to the table 3.

Beginning Statistics, 2nd Edition, Chapter 2.2, Problem 9E , additional homework tip  2

Figure 2

Interpretation:

Figure 2 represents the relative frequency histogram for the given data.

Statistics Concept Introduction

A histogram is a bar graph of a frequency distribution of quantitative data.

Put classes along x-axis and relative frequency along y-axis. Mark class mid- point of every class along x-axis. The width of each bar represents the width of each class. Width of each class should be same and each bar should touch each other.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c   Overhead Costs    Billable Hours345000    3000385000    4000410000    5000462000    6000530000    7000545000    8000
Using the accompanying Home Market Value data and associated regression​ line, Market ValueMarket Valueequals=​$28,416plus+​$37.066×Square ​Feet, compute the errors associated with each observation using the formula e Subscript ieiequals=Upper Y Subscript iYiminus−ModifyingAbove Upper Y with caret Subscript iYi and construct a frequency distribution and histogram. Square Feet    Market Value1813    911001916    1043001842    934001814    909001836    1020002030    1085001731    877001852    960001793    893001665    884001852    1009001619    967001690    876002370    1139002373    1131001666    875002122    1161001619    946001729    863001667    871001522    833001484    798001589    814001600    871001484    825001483    787001522    877001703    942001485    820001468    881001519    882001518    885001483    765001522    844001668    909001587    810001782    912001483    812001519    1007001522    872001684    966001581    86200
a. Find the value of A.b. Find pX(x) and py(y).c. Find pX|y(x|y) and py|X(y|x)d. Are x and y independent? Why or why not?

Chapter 2 Solutions

Beginning Statistics, 2nd Edition

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman