A rocket will carry a communications satellite into low Earth orbit. Suppose that the thrust during the first 200 sec of flight is provided by solid rocket boosters at different points during liftoff. The graph shows the acceleration in G-forces (that is, acceleration in 9 .8-m/sec 2 increments) versus time after launch. a. Approximate the interval(s) over which the acceleration is increasing. b. Approximate the interval(s) over with the acceleration is decreasing. c. How many turning points does the graph show? d. Based on the number of turning points, what is the minimum degree of a polynomial function that could be used to model acceleration versus time? Would the leading coefficient be positive or negative? e. Approximate the time when the acceleration was the greatest. f. Approximate the value of the maximum acceleration.
A rocket will carry a communications satellite into low Earth orbit. Suppose that the thrust during the first 200 sec of flight is provided by solid rocket boosters at different points during liftoff. The graph shows the acceleration in G-forces (that is, acceleration in 9 .8-m/sec 2 increments) versus time after launch. a. Approximate the interval(s) over which the acceleration is increasing. b. Approximate the interval(s) over with the acceleration is decreasing. c. How many turning points does the graph show? d. Based on the number of turning points, what is the minimum degree of a polynomial function that could be used to model acceleration versus time? Would the leading coefficient be positive or negative? e. Approximate the time when the acceleration was the greatest. f. Approximate the value of the maximum acceleration.
A rocket will carry a communications satellite into low Earth orbit. Suppose that the thrust during the first 200 sec of flight is provided by solid rocket boosters at different points during liftoff. The graph shows the acceleration in G-forces (that is, acceleration in
9
.8-m/sec
2
increments) versus time after launch.
a. Approximate the interval(s) over which the acceleration is increasing.
b. Approximate the interval(s) over with the acceleration is decreasing.
c. How many turning points does the graph show?
d. Based on the number of turning points, what is the minimum degree of a polynomial function that could be used to model acceleration versus time? Would the leading coefficient be positive or negative?
e. Approximate the time when the acceleration was the greatest.
f. Approximate the value of the maximum acceleration.
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
There are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and
use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three
investment?
STEP 1: The formula for compound interest is
A =
nt
= P(1 + − − ) n²,
where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to
A = Pert
Find r and n for each model, and use these values to write A in terms of t for each case.
Annual Model
r=0.10
A = Y(t) = 1150 (1.10)*
n = 1
Quarterly Model
r = 0.10
n = 4
A = Q(t) = 1150(1.025) 4t
Continuous Model
r=0.10
A = C(t) =…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY