Gas mileage is tested for a car under different driving conditions. At lower speeds, the car is driven in stop-and-go traffic. At higher speeds, the car must overcome more wind resistance. The variable x given in the table represents the speed (in mph) for a compact car, and m x represents the gas mileage (in mpg). a. Use regression to find a quadratic function to model the data. b. At what speed is the gas mileage the greatest? Round to the neatest mile per hour. c. What is the maximum gas mileage? Round to the nearest mile per gallon.
Gas mileage is tested for a car under different driving conditions. At lower speeds, the car is driven in stop-and-go traffic. At higher speeds, the car must overcome more wind resistance. The variable x given in the table represents the speed (in mph) for a compact car, and m x represents the gas mileage (in mpg). a. Use regression to find a quadratic function to model the data. b. At what speed is the gas mileage the greatest? Round to the neatest mile per hour. c. What is the maximum gas mileage? Round to the nearest mile per gallon.
Solution Summary: The author explains how to determine the quadratic function of the following data using Ti-83 graphing calculator.
Gas mileage is tested for a car under different driving conditions. At lower speeds, the car is driven in stop-and-go traffic. At higher speeds, the car must overcome more wind resistance. The variable x given in the table represents the speed (in mph) for a compact car, and
m
x
represents the gas mileage (in mpg).
a. Use regression to find a quadratic function to model the data.
b. At what speed is the gas mileage the greatest? Round to the neatest mile per hour.
c. What is the maximum gas mileage? Round to the nearest mile per gallon.
Points z1 and z2 are shown on the graph.z1 is at (4 real,6 imaginary), z2 is at (-5 real, 2 imaginary)Part A: Identify the points in standard form and find the distance between them.Part B: Give the complex conjugate of z2 and explain how to find it geometrically.Part C: Find z2 − z1 geometrically and explain your steps.
A polar curve is represented by the equation r1 = 7 + 4cos θ.Part A: What type of limaçon is this curve? Justify your answer using the constants in the equation.Part B: Is the curve symmetrical to the polar axis or the line θ = pi/2 Justify your answer algebraically.Part C: What are the two main differences between the graphs of r1 = 7 + 4cos θ and r2 = 4 + 4cos θ?
A curve, described by x2 + y2 + 8x = 0, has a point A at (−4, 4) on the curve.Part A: What are the polar coordinates of A? Give an exact answer.Part B: What is the polar form of the equation? What type of polar curve is this?Part C: What is the directed distance when Ø = 5pi/6 Give an exact answer.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY