PHY F/SCIENTIST MOD MASTERING 24 MO
17th Edition
ISBN: 9780137319497
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 50EAP
A positive point charge
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A positive point charge Q is located at x-a and a negative point charge -Q is at x = -a.
A positive charge q can be placed anywhere on the y-axis. Find an expression for (FX,
the x -component of the net force on q. Give your answer in terms of Q, q, a, y and
constant K. Do your assessment by looking at (F)x when y = 0.
net
net
Please asap
Four point charges of equal magnitude Q = 45 nC are placed on the corners of a rectangle of sides D1 = 16 cm and D2 = 9 cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y direction is up and the positive x direction is to the right.
a) Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.
b) Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.
c)Calculate the magnitude of the net force, in newtons, on the charge located at the lower left corner of the rectangle.
d) Calculate the angle of the net force vector relative to the +x axis, with the positive direction being counterclockwise from the positive horizontal axis. Enter an angle between -180° and 180°.
Chapter 22 Solutions
PHY F/SCIENTIST MOD MASTERING 24 MO
Ch. 22 - l. Can an insulator be charged? If so, how would...Ch. 22 - Can a conductor be charged? If so, how would you...Ch. 22 - Four lightweight balls A, B, C, and D are...Ch. 22 - Charged plastic and glass rods hang by threads. a....Ch. 22 - A lightweight metal ball hangs by a thread. When a...Ch. 22 - Prob. 6CQCh. 22 - Prob. 7CQCh. 22 - The two oppositely charged metal spheres in FIGURE...Ch. 22 - Metal sphere A in FIGURE Q22.9 has 4 units of...Ch. 22 - Prob. 10CQ
Ch. 22 - Prob. 11CQCh. 22 - Prob. 12CQCh. 22 - Reproduce FIGURE Q22.13 on your paper. Then draw a...Ch. 22 - Prob. 14CQCh. 22 - The electric force on a charged particle in an...Ch. 22 - A glass rod is charged to +8.0 nC by rubbing. a....Ch. 22 - Prob. 2EAPCh. 22 - 3. A plastic rod that has been charged to —15 nC...Ch. 22 - A glass rod that has been charged to + 12 nC...Ch. 22 - Prob. 5EAPCh. 22 - Prob. 6EAPCh. 22 - Prob. 7EAPCh. 22 - A linear accelerator uses alternating electric...Ch. 22 - Prob. 9EAPCh. 22 - Two neutral metal spheres on wood stands are...Ch. 22 - Prob. 11EAPCh. 22 - You have two neutral metal spheres on wood stands....Ch. 22 -
13. Two 1.0 kg masses are 1.0 m apart (center...Ch. 22 - Two small plastic spheres each have a mass of 2.0...Ch. 22 - Prob. 15EAPCh. 22 - Two protons are 2.0 fm apart. What is the...Ch. 22 - What is the net electric force on charge A in...Ch. 22 - What is the net electric force on charge B in...Ch. 22 - What is the force F on the 1.0 nC charge in FIGURE...Ch. 22 - What is the force on the 1.0nC charge in figure...Ch. 22 - Object A, which has been charged to +4.0 nC, is at...Ch. 22 - A small plastic bead has been charged to —15 nC....Ch. 22 - A 2.0 g plastic bead charged to —4.0 nC and a 4.0...Ch. 22 - Two positive point charges q and 4q are at x = O...Ch. 22 - A massless spring is attached to a support at one...Ch. 22 - What are the strength and direction of the...Ch. 22 - The electric field at a point in space is E =...Ch. 22 - Prob. 28EAPCh. 22 - What magnitude charge creates a 1.0 N/C electric...Ch. 22 - Prob. 30EAPCh. 22 - Prob. 31EAPCh. 22 - A + 12 nC charge is located at the origin. a. What...Ch. 22 - A —12 nC charge is located at (x, y) = (1.0 cm, 0...Ch. 22 - A 0.10 g honeybee acquires a charge of +23 pC...Ch. 22 - Prob. 35EAPCh. 22 - 36. Two 1.0 g spheres are charged equally and...Ch. 22 - 37. The nucleus of a 125Xe atom (an isotope of...Ch. 22 - Prob. 38EAPCh. 22 - Prob. 39EAPCh. 22 - Objects A and B are both positively charged. Both...Ch. 22 - What is the force F on the —10 nC charge in FIGURE...Ch. 22 - What is the force F on the —10nC charge in FIGURE...Ch. 22 - 43. What is the force on the 5.0 nC charge in...Ch. 22 - Prob. 44EAPCh. 22 - What is the force F on the 1.0 nC charge at the...Ch. 22 - What is the force F on the 1.0 nC charge at the...Ch. 22 - Prob. 47EAPCh. 22 - The net force on the 1.0 nC charge in FIGURE...Ch. 22 - Prob. 49EAPCh. 22 - A positive point charge Q is located at x=a and a...Ch. 22 - Prob. 51EAPCh. 22 - FIGURE P22.52 shows three charges and the net...Ch. 22 - Prob. 53EAPCh. 22 - Prob. 54EAPCh. 22 - You have two small, 2.0 g balls that have been...Ch. 22 - A 2.0 g metal cube and a 4.0 g metal cube are 6.0...Ch. 22 - Prob. 57EAPCh. 22 - Prob. 58EAPCh. 22 - Prob. 59EAPCh. 22 - Prob. 60EAPCh. 22 - Prob. 61EAPCh. 22 - Two 5.0 g point charges on 1.0-m-long threads...Ch. 22 - Prob. 63EAPCh. 22 - Prob. 64EAPCh. 22 - 65. A 10.0 nC charge is located at position (1.0...Ch. 22 - Prob. 66EAPCh. 22 - An electric field E = 100,000i N/C causes the 5.0...Ch. 22 - An electric field E = 200,000i N/C causes the...Ch. 22 - Prob. 69EAPCh. 22 - In Problems 69 through 72 you are given the...Ch. 22 - Prob. 71EAPCh. 22 - Prob. 72EAPCh. 22 - Prob. 73EAPCh. 22 - Three 3.0 g balls are tied to 80-cm-long threads...Ch. 22 - 75. IN ne identical small spheres shown in FIGURE...Ch. 22 - 76. The force on the -1.0 nC charge is as shown in...Ch. 22 - 77. In Section 22.3 we claimed that a charged...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Panicle A of charge 3.00 104 C is at the origin, particle B of charge 6.00 104 C is at (4.00 m, 0), and panicle C of charge 1.00 104 C is at (0, 3.00 m). (a) What is the x-component of the electric force exerted by A on C? (b) What is the y-component of the force exerted by A on C? (c) Find the magnitude of the force exerted by B on C. (d) Calculate the x-component of the force exerted by B on C. (e) Calculate the y-component of the force exerted by B on C. (f) Sum the two x-components to obtain the resultant x-component of the electric force acting on C. (g) Repeat part (f) for the y-component. (h) Find the magnitude and direction of the resultant electric force acting on C.arrow_forwardEight small conducting spheres with identical charge q = 2.00 C are placed at the corners of a cube of side d = 0.500 m (Fig. P23.75). What is the total force on the sphere at the origin (sphere A) due to the other seven spheres? Figure P23.75arrow_forwardFour equally charged particles with charge q are placed at the comers of a square with side length L, as shown in Figure P23.51. A fifth charged particle with charge Q is placed at the center of the square so that the entire system of charges is in static equilibrium. What are the magnitude and sign of the charge Q? Figure P23.51arrow_forward
- A Two positively charged particles, each with charge Q, are held at positions (a, 0) and (a, 0) as shown in Figure P23.73. A third positively charged particle with charge q is placed at (0, h). a. Find an expression for the net electric force on the third particle with charge q. b. Show that the two charges Q behave like a single charge 2Q located at the origin when the distance h is much greater than a. Figure P23.73 Problems 73 and 74.arrow_forwardThree charged metal spheres are arrayed in the xy plane so that they form an equilateral triangle (Fig. P23.40). What is the net electrostatic force on the sphere at the origin? Figure P23.40arrow_forwardThree charges are located at different positions on a 2-dimensional grid. There is a +5µC charge at the origin, a +2µC charge on the x-axis at x=2 m, and a -4µC charge on the y-axis at the point y=3 m. Find the net force on the charge at the origin. Express your answer in component form and as a magnitude and direction.arrow_forward
- In the rectangle in the drawing, a charge is to be placed at the empty corner to make the net force on the charge at corner A point along the vertical direction. What charge (magnitude and algebraic sign) must be placed at the empty corner? +3.0 μC Number i Units A +3.0 μC 4d d +3.0 μCarrow_forwardA uniform line of charge with length 20.0 cm is along the x-axis, with its midpoint at x = 0. Its charge per length is +6.30 nC/m. A small sphere with charge -2.00 μC is located at x = 0, y = 5.00 cm. What is the magnitude of the force that the charged sphere exerts on the line of charge?arrow_forwardA thin, semi-infinite wire with a constant linear charge density λ extends from −∞ < x ≤ 0. A point charge q is placed at a position x = a with a > 0. Find an expression for the magnitude of the force on q from the wire.arrow_forward
- Two equal positive point charges q1 = q2 = 2μC interact with a third point charge Q = 4μC. Find the magnitude and direction of the total force in Q.arrow_forwardTwo charges q1 = 4 µC, 92 = -24 µC, are L = 12 cm apart. A third charge is to be placed on the line between the two charges. How far from q1 should the third charge be placed so that the net electric force on the third charge is minimized? 4.8 cm You need to come up with an equation that represents the net force on the third charge as a function of the distance x, then use appropriate calculus to find the value of x where this net force is a minimum.arrow_forwardTwo large parallel conducting plates carry charges of equal magnitude and opposite charge. When you place a point charge q = +3.60 nC between the plates, the force on the point charge is 22.0 mN. What is the magnitude of the surface charge density on either plate?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY