
Basic Technical Mathematics
11th Edition
ISBN: 9780134437705
Author: Washington
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 4PT
To determine
To draw: The histogram for the class of limits
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Q.2.1 A bag contains 13 red and 9 green marbles. You are asked to select two (2) marbles from the bag. The first marble selected will not be placed back into the bag.
Q.2.1.1 Construct a probability tree to indicate the various possible outcomes and their probabilities (as fractions).
Q.2.1.2 What is the probability that the two selected marbles will be the same colour?
Q.2.2 The following contingency table gives the results of a sample survey of South African male and female respondents with regard to their preferred brand of sports watch:
PREFERRED BRAND OF SPORTS WATCH
Samsung
Apple
Garmin
TOTAL
No. of Females
30
100
40
170
No. of Males
75
125
80
280
TOTAL
105
225
120
450
Q.2.2.1 What is the probability of randomly selecting a respondent from the sample who prefers Garmin?
Q.2.2.2 What is the probability of randomly selecting a respondent from the sample who is not female?
Q.2.2.3 What is the probability of randomly…
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Construct tables showing the values of alI the Dirichlet characters mod k fork = 8,9, and 10.
(please show me result in a table and the equation in mathematical format.)
Chapter 22 Solutions
Basic Technical Mathematics
Ch. 22.1 - In Example 3, change the class limits to 1.0, 2.0,...Ch. 22.1 - Prob. 2ECh. 22.1 - In Exercises 3-6, indicate whether the variable is...Ch. 22.1 - In Exercises 3-6, indicate whether the variable is...Ch. 22.1 - In Exercises 3-6, indicate whether the variable is...Ch. 22.1 - In Exercises 3-6, indicate whether the variable is...Ch. 22.1 - In Exercises 7-10, use the following data. In a...Ch. 22.1 - In Exercises 7-10, use the following data. In a...Ch. 22.1 - In Exercises 7–10, use the following data. In a...Ch. 22.1 - In Exercises 7–10, use the following data. In a...
Ch. 22.1 - In Exercises 11–14, use the following data. In a...Ch. 22.1 - In Exercises 11–14, use the following data. In a...Ch. 22.1 - In Exercises 11–14, use the following data. In a...Ch. 22.1 - In Exercises 11–14, use the following data. In a...Ch. 22.1 - In Exercises 15–18, use the following data. In...Ch. 22.1 - In Exercises 15–18, use the following data. In...Ch. 22.1 - In Exercises 15-18, use the following data. In...Ch. 22.1 - In Exercises 15-18, use the following data. In...Ch. 22.1 - In Exercises 19-24, use the following data. In a...Ch. 22.1 - In Exercises 19-24, use the following data. In a...Ch. 22.1 - In Exercises 19-24, use the following data. In a...Ch. 22.1 - In Exercises 19-24, use the following data. In a...Ch. 22.1 - In Exercises 19-24, use the following data. In a...Ch. 22.1 - In Exercises 19-24, use the following data. In a...Ch. 22.1 - In Exercises 25 and 26, use the following data....Ch. 22.1 - In Exercises 25 and 26, use the following data....Ch. 22.1 - In Exercises 27 and 28, use the following data....Ch. 22.1 - In Exercises 27 and 28, use the following data....Ch. 22.1 - The data in the table show the global mean...Ch. 22.1 - The data in the following table show the...Ch. 22.2 - For the following numbers, find the indicated...Ch. 22.2 - For the following numbers, find the indicated...Ch. 22.2 - For the following numbers, find the indicated...Ch. 22.2 - Prob. 1ECh. 22.2 - Prob. 2ECh. 22.2 - Prob. 3ECh. 22.2 - In Exercises 1–4, delete the 5 from the data...Ch. 22.2 - In Exercises 5–16, use the following sets of...Ch. 22.2 - In Exercises 5–16, use the following sets of...Ch. 22.2 - In Exercises 5–16, use the following sets of...Ch. 22.2 - In Exercises 5–16, use the following sets of...Ch. 22.2 - In Exercises 5–16, use the following sets of...Ch. 22.2 - In Exercises 5–16, use the following sets of...Ch. 22.2 - Prob. 11ECh. 22.2 - Prob. 12ECh. 22.2 - Prob. 13ECh. 22.2 - Prob. 14ECh. 22.2 - Prob. 15ECh. 22.2 - Prob. 16ECh. 22.2 - In Exercises 17-34, the required data are those in...Ch. 22.2 - In Exercises 17-34, the required data are those in...Ch. 22.2 - In Exercises 17–34, the required data are those in...Ch. 22.2 - In Exercises 17–34, the required data are those in...Ch. 22.2 - Prob. 21ECh. 22.2 - Prob. 22ECh. 22.2 - Prob. 23ECh. 22.2 - Prob. 24ECh. 22.2 - Prob. 25ECh. 22.2 - Prob. 26ECh. 22.2 - In Exercises 17–34, the required data are those in...Ch. 22.2 - Prob. 28ECh. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - In Exercises 29–42, find the indicated measure of...Ch. 22.2 - Add $100 to each of the salaries in Exercise 29....Ch. 22.2 - Multiply each of the salaries in Exercise 29 by 2....Ch. 22.2 - Change the final salary in Exercise 29 to $4000,...Ch. 22.2 - Find the median and mode of the salaries indicated...Ch. 22.3 - Find the standard deviation of the first eight...Ch. 22.3 - Prob. 1ECh. 22.3 - Prob. 2ECh. 22.3 - Prob. 3ECh. 22.3 - Prob. 4ECh. 22.3 - Prob. 5ECh. 22.3 - Prob. 6ECh. 22.3 - Prob. 7ECh. 22.3 - In Exercises 3–14, use the following sets of...Ch. 22.3 - Prob. 9ECh. 22.3 - Prob. 10ECh. 22.3 - Prob. 11ECh. 22.3 - Prob. 12ECh. 22.3 - Prob. 13ECh. 22.3 - Prob. 14ECh. 22.3 - Prob. 15ECh. 22.3 - Prob. 16ECh. 22.3 - Prob. 17ECh. 22.3 - Prob. 18ECh. 22.3 - Prob. 19ECh. 22.3 - Prob. 20ECh. 22.3 - Prob. 21ECh. 22.3 - Prob. 22ECh. 22.4 - Prob. 1PECh. 22.4 - Prob. 2PECh. 22.4 - Prob. 1ECh. 22.4 - In Exercises 1–4, make the given changes in the...Ch. 22.4 - Prob. 3ECh. 22.4 - Prob. 4ECh. 22.4 - Prob. 5ECh. 22.4 - Prob. 6ECh. 22.4 - Prob. 7ECh. 22.4 - In Exercises 5–8, use the following information....Ch. 22.4 -
In Exercises 9–12, use the following information....Ch. 22.4 -
In Exercises 9–12, use the following information....Ch. 22.4 -
In Exercises 9–12, use the following information....Ch. 22.4 -
In Exercises 9–12, use the following information....Ch. 22.4 -
In Exercises 13–16, use the following data. It...Ch. 22.4 -
In Exercises 13–16, use the following data. It...Ch. 22.4 -
In Exercises 13–16, use the following data. It...Ch. 22.4 -
In Exercises 13–16, use the following data. It...Ch. 22.4 -
In Exercises 17–24, use the following data. The...Ch. 22.4 - Prob. 18ECh. 22.4 - Prob. 19ECh. 22.4 - Prob. 20ECh. 22.4 -
In Exercises 17–24, use the following data. The...Ch. 22.4 - Prob. 22ECh. 22.4 - Prob. 23ECh. 22.4 - Prob. 24ECh. 22.4 -
In Exercises 25–30, solve the given problems,
25....Ch. 22.4 - Prob. 26ECh. 22.4 - Prob. 27ECh. 22.4 - Prob. 28ECh. 22.4 - Prob. 29ECh. 22.4 - Prob. 30ECh. 22.5 - Is either the mean or range affected if subgroup...Ch. 22.5 - Prob. 2PECh. 22.5 - Prob. 1ECh. 22.5 - Prob. 2ECh. 22.5 - Prob. 3ECh. 22.5 - Prob. 4ECh. 22.5 - Prob. 5ECh. 22.5 - Prob. 6ECh. 22.5 - Prob. 7ECh. 22.5 - Prob. 8ECh. 22.5 - In Exercise 9–12, use the following data.
Five AC...Ch. 22.5 - In Exercise 9–12, use the following data.
Five AC...Ch. 22.5 - Prob. 11ECh. 22.5 - Prob. 12ECh. 22.5 - Prob. 13ECh. 22.5 - Prob. 14ECh. 22.5 - Prob. 15ECh. 22.5 - In Exercises 13–16, use the following...Ch. 22.5 - In Exercises 17 and 18, use the following data.
A...Ch. 22.5 - Prob. 18ECh. 22.5 - Prob. 19ECh. 22.5 - Prob. 20ECh. 22.6 - In Exercises 1–14, find the equation of the...Ch. 22.6 - EXERCISE 22.6
In Exercises 1–14, find the equation...Ch. 22.6 - EXERCISE 22.6
In Exercises 1–14, find the equation...Ch. 22.6 - Prob. 4ECh. 22.6 - Prob. 5ECh. 22.6 - Prob. 6ECh. 22.6 - Prob. 7ECh. 22.6 - Prob. 8ECh. 22.6 - Prob. 9ECh. 22.6 - Prob. 10ECh. 22.6 - Prob. 11ECh. 22.6 - Prob. 12ECh. 22.6 - Prob. 13ECh. 22.6 - Prob. 14ECh. 22.6 - Prob. 15ECh. 22.6 - Prob. 16ECh. 22.6 - Prob. 17ECh. 22.6 - Prob. 18ECh. 22.7 - Prob. 1ECh. 22.7 - Prob. 2ECh. 22.7 - Prob. 3ECh. 22.7 - Prob. 4ECh. 22.7 - Prob. 5ECh. 22.7 - Prob. 6ECh. 22.7 - Prob. 7ECh. 22.7 - Prob. 8ECh. 22.7 - Prob. 9ECh. 22.7 - Prob. 10ECh. 22.7 - Prob. 11ECh. 22.7 - Prob. 12ECh. 22 - Prob. 1RECh. 22 - Determine each of the following as being either...Ch. 22 - Determine each of the following as being either...Ch. 22 - Prob. 4RECh. 22 - Prob. 5RECh. 22 - Prob. 6RECh. 22 - Prob. 7RECh. 22 - Prob. 8RECh. 22 - Prob. 9RECh. 22 - Prob. 10RECh. 22 - Prob. 11RECh. 22 - Prob. 12RECh. 22 - Prob. 13RECh. 22 - Prob. 14RECh. 22 - Prob. 15RECh. 22 - Prob. 16RECh. 22 - Prob. 17RECh. 22 - Prob. 18RECh. 22 - Prob. 19RECh. 22 - Prob. 20RECh. 22 - Prob. 21RECh. 22 - Prob. 22RECh. 22 - Prob. 23RECh. 22 - Prob. 24RECh. 22 - Prob. 25RECh. 22 - Prob. 26RECh. 22 - Prob. 27RECh. 22 - Prob. 28RECh. 22 - Prob. 29RECh. 22 - Prob. 30RECh. 22 - Prob. 31RECh. 22 - Prob. 32RECh. 22 - Prob. 33RECh. 22 - Prob. 34RECh. 22 - Prob. 35RECh. 22 - Prob. 36RECh. 22 - Prob. 37RECh. 22 - Prob. 38RECh. 22 - Prob. 39RECh. 22 - Prob. 40RECh. 22 - Prob. 41RECh. 22 - Prob. 42RECh. 22 - Prob. 43RECh. 22 - Prob. 44RECh. 22 - Prob. 45RECh. 22 - Prob. 46RECh. 22 - Prob. 47RECh. 22 - Prob. 48RECh. 22 - Prob. 49RECh. 22 - Prob. 50RECh. 22 - Prob. 51RECh. 22 - Prob. 52RECh. 22 - Prob. 53RECh. 22 - Prob. 54RECh. 22 - Prob. 55RECh. 22 - Prob. 56RECh. 22 - Prob. 57RECh. 22 - Prob. 58RECh. 22 - Prob. 59RECh. 22 - Prob. 60RECh. 22 - Prob. 61RECh. 22 - Prob. 1PTCh. 22 - Prob. 2PTCh. 22 - Prob. 3PTCh. 22 - Prob. 4PTCh. 22 - Prob. 5PTCh. 22 - Prob. 6PTCh. 22 - Prob. 7PTCh. 22 - Prob. 8PTCh. 22 - Prob. 9PTCh. 22 - In Problems 9–11, use the following information....Ch. 22 - Prob. 11PTCh. 22 - Prob. 12PTCh. 22 - Prob. 13PTCh. 22 - Prob. 14PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Example: For what odd primes p is 11 a quadratic residue modulo p? Solution: This is really asking "when is (11 | p) =1?" First, 11 = 3 (mod 4). To use LQR, consider two cases p = 1 or 3 (mod 4): p=1 We have 1 = (11 | p) = (p | 11), so p is a quadratic residue modulo 11. By brute force: 121, 224, 3² = 9, 4² = 5, 5² = 3 (mod 11) so the quadratic residues mod 11 are 1,3,4,5,9. Using CRT for p = 1 (mod 4) & p = 1,3,4,5,9 (mod 11). p = 1 (mod 4) & p = 1 (mod 11 gives p 1 (mod 44). p = 1 (mod 4) & p = 3 (mod 11) gives p25 (mod 44). p = 1 (mod 4) & p = 4 (mod 11) gives p=37 (mod 44). p = 1 (mod 4) & p = 5 (mod 11) gives p 5 (mod 44). p = 1 (mod 4) & p=9 (mod 11) gives p 9 (mod 44). So p =1,5,9,25,37 (mod 44).arrow_forwardCan you answer this question and give step by step and why and how to get it. Can you write it (numerical method)arrow_forwardJamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the nearest dollar.arrow_forward
- r nt Use the compound interest formula, A (t) = P(1 + 1)". An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi- annually. Round all answers to the nearest dollar. a. What will the account be worth in 10 years? $ b. What if the interest were compounding monthly? $ c. What if the interest were compounded daily (assume 365 days in a year)? $arrow_forwardKyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) %arrow_forwardTest the claim that a student's pulse rate is different when taking a quiz than attending a regular class. The mean pulse rate difference is 2.7 with 10 students. Use a significance level of 0.005. Pulse rate difference(Quiz - Lecture) 2 -1 5 -8 1 20 15 -4 9 -12arrow_forward
- There are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forwardThe following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. D. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? I leave the answers to A and B to resolve the remaining two. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8 A. Measures of Central Tendency We are to calculate: Mean, Median, Mode The data (already ordered) is: 0.8, 1.4, 1.8, 1.9, 3.2, 3.6, 4.5, 4.5, 4.6, 6.2, 6.5, 7.7, 7.9, 9.9, 10.2, 10.3, 10.9, 11.1, 11.1, 11.6, 11.8, 12.0, 13.1, 13.5, 13.7, 14.1, 14.2, 14.7, 15.0, 15.1, 15.5,…arrow_forwardA tournament is a complete directed graph, for each pair of vertices x, y either (x, y) is an arc or (y, x) is an arc. One can think of this as a round robin tournament, where the vertices represent teams, each pair plays exactly once, with the direction of the arc indicating which team wins. (a) Prove that every tournament has a direct Hamiltonian path. That is a labeling of the teams V1, V2,..., Un so that vi beats Vi+1. That is a labeling so that team 1 beats team 2, team 2 beats team 3, etc. (b) A digraph is strongly connected if there is a directed path from any vertex to any other vertex. Equivalently, there is no partition of the teams into groups A, B so that every team in A beats every team in B. Prove that every strongly connected tournament has a directed Hamiltonian cycle. Use this to show that for any team there is an ordering as in part (a) for which the given team is first. (c) A king in a tournament is a vertex such that there is a direct path of length at most 2 to any…arrow_forward
- Use a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forwardhow to construct the following same table?arrow_forwardThe following is known. The complete graph K2t on an even number of vertices has a 1- factorization (equivalently, its edges can be colored with 2t - 1 colors so that the edges incident to each vertex are distinct). This implies that the complete graph K2t+1 on an odd number of vertices has a factorization into copies of tK2 + K₁ (a matching plus an isolated vertex). A group of 10 people wants to set up a 45 week tennis schedule playing doubles, each week, the players will form 5 pairs. One of the pairs will not play, the other 4 pairs will each play one doubles match, two of the pairs playing each other and the other two pairs playing each other. Set up a schedule with the following constraints: Each pair of players is a doubles team exactly 4 times; during those 4 matches they see each other player exactly once; no two doubles teams play each other more than once. (a) Find a schedule. Hint - think about breaking the 45 weeks into 9 blocks of 5 weeks. Use factorizations of complete…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY