Physics: Principles with Applications
7th Edition
ISBN: 9780321625922
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 4P
A 1500-nF capacitor with circular parallel plates 2.0 cm in diameter is accumulating charge at the rate of 32.0 mC/s at some instant in time. What will be the induced magnetic field strength 10.0 cm radially outward from the center of the plates? What will be the value of the field strength after the capacitor is fully charged?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
wrong
A particle with a charge of +10.0 μC is moving at 300. m/s in the positive z-direction.
a. Find the minimum magnetic field required to keep it moving ina straight line at constant speed if there is a uniform electric field of magnitude 100. V/m pointing in the positive y-direction.
b. Find the minimum magnetic field required to keep the particle moving in a straight line at constant speed if there is a uniform electric field of magnitude 100. V/m pointing in the positive z-direction.
Suppose the parallel-plate capacitor shown below is accumulating charge at a rate of 0.010 C/s. What is the induced magnetic field at a distance of 10 cm from the capacitator?
Chapter 22 Solutions
Physics: Principles with Applications
Ch. 22 - Prob. 1OQCh. 22 - Prob. 1QCh. 22 - Prob. 2QCh. 22 - Prob. 3QCh. 22 - Prob. 4QCh. 22 - Prob. 5QCh. 22 - Prob. 6QCh. 22 - Prob. 7QCh. 22 - Prob. 8QCh. 22 - Prob. 9Q
Ch. 22 - Prob. 10QCh. 22 - Prob. 11QCh. 22 - Prob. 12QCh. 22 - Prob. 1MCQCh. 22 - Prob. 2MCQCh. 22 - Prob. 3MCQCh. 22 - Prob. 4MCQCh. 22 - Prob. 5MCQCh. 22 - Prob. 6MCQCh. 22 - Prob. 7MCQCh. 22 - Prob. 8MCQCh. 22 - Prob. 9MCQCh. 22 - Prob. 10MCQCh. 22 - Prob. 11MCQCh. 22 - Determine the rate at which the electric field...Ch. 22 - Calculate the displacement current IDbetween the...Ch. 22 - Prob. 3PCh. 22 - A 1500-nF capacitor with circular parallel plates...Ch. 22 - Prob. 5PCh. 22 - If the magnetic field in a traveling EM wave has a...Ch. 22 - 7. (I) In an EM wave traveling west, theBfield...Ch. 22 - Prob. 8PCh. 22 - Prob. 9PCh. 22 - An EM wave has a wavelength of 720 nm. What is its...Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Prob. 15PCh. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - The E field in an EM wave has a peak of 22.5...Ch. 22 - Prob. 23PCh. 22 - Prob. 24PCh. 22 - A spherically spreading EM wave comes from an...Ch. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Prob. 29PCh. 22 - Prob. 30PCh. 22 - Estimate the radiation pressure due to a bulb that...Ch. 22 - What size should the solar panel on a satellite...Ch. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - The oscillator of a 98.3-MHz FM station has an...Ch. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - Prob. 43PCh. 22 - Prob. 44GPCh. 22 - Prob. 45GPCh. 22 - Prob. 46GPCh. 22 - Prob. 47GPCh. 22 - Prob. 48GPCh. 22 - Prob. 49GPCh. 22 - Prob. 50GPCh. 22 - What are Eo and Bo at a point 2.50 m from a light...Ch. 22 - Prob. 52GPCh. 22 - Prob. 53GPCh. 22 - Prob. 54GPCh. 22 - A radio station is allowed to broadcast at an...Ch. 22 - Prob. 56GPCh. 22 - Prob. 57GPCh. 22 - Prob. 58GPCh. 22 - Prob. 59GPCh. 22 - Prob. 60GPCh. 22 - Prob. 61GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forwardA particle of cosmic dust has a density =2.0g/cm3 , (a) Assuming the dust particles are spherical and light absorbing, and are at the same distance as Earth from the Sun, determine the particle size for which radiation pressure from sunlight is equal to the Sun's force of gravity on the dust particle, (b) Explain how the forces compare if the particle radius is smaller, (c) Explain what this implies about the sizes of dust particle likely to be present in the inner solar system compared with outside the Oort cloud.arrow_forwardThe potential difference V(t) between parallel plates shown above is instantaneously increasing at a rate of 107V/s. What is the displacement current between the plates if the separation of the plates is 1.00 cm and they have an area of 0.200m2?arrow_forward
- Suppose the parallel-plate capacitor shown below is accumulating charge at a rate of 0.010 C’s. What is the induced magnetic field at a distance of 10 cm from the capacitator?arrow_forward(a) An oxygen16 ion with a mass at 2.661026kg travels at 5.00106m/s perpendicular to a 1.20T magnetic field, which makes it move in a circular arc with a 0.231-m radius. What positive charge is on the ion? (b) What is the radio of this charge to the charge of an electron? (c) Discuss why the radio found in (b) should be an integer.arrow_forwardDuring normal bee?ng, the heat creates a maximum 4.00mv potential across 0.300 m of a person’s chest, creating a 1.00-Hz electromagnetic wave. (a) What is the maximum electric field strength created? (b) What is the corresponding maximum magnetic field strength in the electromagnetic wave? (c) What is the wavelength of the electromagnetic wave?arrow_forward
- A parallel-plate capacitor with plate separation d is connected to a source of emf that places a time-dependent voltage V(t) across its circular plates of radius r0and area (a) Write an expression for the time rate of change of energy inside the capacitor in terms of V(t) and dV(t)/ dt. (b) Assuming that V(t) is increasing with time, identify the directions of the elecuic field lines inside the capacitor and of the magnetic field lines at the edge of the region between the plates, and then the direction of the Poynting vector S at this location. (c) Obtain expressions for the time dependence of E(t), for B(t) from the displacement current, and for the magnitude of the Poynting vector at the edge of the region between the plates. (d) From S , obtain an expression In terms of ‘(t) and dV(t)/dt for the rate at which electromagnetic field energy the region between the plates. (e) Compare the results of pails (a) and (d) and explain the relationship between them.arrow_forwardA uniform magnetic field B=5.44104iT passes through a closed surface with a slanted top as shown in Figure P31.59. a. Given the dimensions and orientation of the closed surface shown, what is the magnetic flux through the slanted top of the surface? b. What is the net magnetic flux through the entire closed surface?arrow_forwardWhat are the wavelengths of (a) X-rays of frequency 2.01017 Hz? (b) Yellow light of frequency 5.11014Hz ? (C) Gamma rays of frequency 1.01023Hz ?arrow_forward
- A certain 60.0-Hz ac power line radiates an electromagnetic wave having a maximum electric field strength of 13.0 kV/m. (a) What is the wavelength of this very-low-frequency electromagnetic wave? (b) What type of electromagnetic radiation is this wave (b) What is its maximum magnetic field strength?arrow_forwardSuppose a spherical particle of mass m and radius R in space absorbs light of intensity I for time t. (a) How much work does the radiation pressure do to accelerate the particle (mm rest In the given tine It absorbs the light? (b) How much energy canted by the electromagnetic waves is absorbed by the particle over this time based on the radiant energy incident on the particle?arrow_forwardHigh-power lasers in factories are used to cut through cloth and metal (Fig. P33.15). One such laser has a beam diameter of 1.00 mm and generates an electric field having an amplitude of 0.700 MV/m at the target. Find (a) the amplitude of the magnetic field produced, (b) the intensity of the laser, and (c) the power delivered by the laser. Figure P33.15arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY