
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 49P
To determine
The overall heat transfer of the heat exchanger.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Example-1:
l
D
A uniform rotor of length 0.6 m and diameter 0.4 m is made of steel (density 7810 kg/m³)
is supported by identical short bearings of stiffness 1 MN/m in the horizontal and vertical
directions. If the distance between the bearings is 0.7 m, determine the natural frequencies
and plot whirl speed map.
Solution:
B
find the laplace transform for the
flowing function
2(1-e)
Ans. F(s)=-
S
12)
k
0
Ans. F(s)=
k
s(1+e)
0 a
2a 3a 4a
13)
2+
Ans. F(s)=
1
s(1+e")
3
14) f(t)=1, 0
Find the solution of the following Differential Equations
Using Laplace Transforms
1) 4y+2y=0.
y(0)=2.
y'(0)=0.
2) y+w²y=0,
(0)=A,
y'(0)=B.
3) +2y-8y 0.
y(0)=1.
y'(0)-8.
4)-2-3y=0,
y(0)=1.
y'(0)=7.
5) y-ky'=0,
y(0)=2,
y'(0)=k.
6) y+ky'-2k²y=0,
y(0)=2,
y'(0) = 2k.
7) '+4y=0,
y(0)=2.8
8) y+y=17 sin(21),
y(0)=-1.
9) y-y-6y=0,
y(0)=6,
y'(0)=13.
10) y=0.
y(0)=4,
y' (0)=0.
11) -4y+4y-0,
y(0)=2.1.
y'(0)=3.9
12) y+2y'+2y=0,
y(0)=1,
y'(0)=-3.
13) +7y+12y=21e".
y(0)=3.5.
y'(0)=-10.
14) "+9y=10e".
y(0)=0,
y'(0)=0.
15) +3y+2.25y=91' +64.
y(0)=1.
y'(0) = 31.5
16)
-6y+5y-29 cos(2t).
y(0)=3.2,
y'(0)=6.2
17) y+2y+2y=0,
y(0)=0.
y'(0)=1.
18) y+2y+17y=0,
y(0)=0.
y'(0)=12.
19) y"-4y+5y=0,
y(0)=1,
y'(0)=2.
20) 9y-6y+y=0,
(0)-3,
y'(0)=1.
21) -2y+10y=0,
y(0)=3,
y'(0)=3.
22) 4y-4y+37y=0,
y(0)=3.
y'(0)=1.5
23) 4y-8y+5y=0,
y(0)=0,
y'(0)=1.
24)
++1.25y-0,
y(0)=1,
y'(0)=-0.5
25) y 2 cos(r).
y(0)=2.
y'(0) = 0.
26)
-4y+3y-0,
y(0)=3,
y(0) 7.
27) y+2y+y=e
y(0)=0.
y'(0)=0.
28) y+2y-3y=10sinh(27),
y(0)=0.
y'(0)=4.
29)…
Chapter 22 Solutions
Fundamentals of Thermal-Fluid Sciences
Ch. 22 - Prob. 1PCh. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - What is the role of the baffles in a...Ch. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Prob. 9PCh. 22 - In a thin-walled double-pipe heat exchanger, when...
Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Prob. 15PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - Water at an average temperature of 110°C and an...Ch. 22 - Prob. 21PCh. 22 - Prob. 23PCh. 22 - Prob. 24PCh. 22 - Under what conditions is the heat transfer...Ch. 22 - Consider a condenser in which steam at a specified...Ch. 22 - What is the heat capacity rate? What can you say...Ch. 22 - Under what conditions will the temperature rise of...Ch. 22 - Show that the temperature profile of two fluid...Ch. 22 - Prob. 30PCh. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - A double-pipe parallel-flow heat exchanger is to...Ch. 22 - Glycerin (cp = 2400 J/kg·K) at 20°C and 0.5 kg/s...Ch. 22 - Prob. 43PCh. 22 - A single pass heat exchanger is to be designed to...Ch. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - A counter-flow heat exchanger is stated to have an...Ch. 22 - Prob. 49PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - Prob. 54PCh. 22 - Prob. 56PCh. 22 - A performance test is being conducted on a...Ch. 22 - In an industrial facility a counter-flow...Ch. 22 - Prob. 59PCh. 22 - Prob. 60PCh. 22 - Prob. 61PCh. 22 - A shell-and-tube heat exchanger with 2-shell...Ch. 22 - A shell-and-tube heat exchanger with 2-shell...Ch. 22 - Repeat Prob. 22–64 for a mass flow rate of 3 kg/s...Ch. 22 - A shell-and-tube heat exchanger with 2-shell...Ch. 22 - A single-pass cross-flow heat exchanger is used to...Ch. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Prob. 71PCh. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Under what conditions can a counter-flow heat...Ch. 22 - Prob. 75PCh. 22 - Prob. 76PCh. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 79PCh. 22 - Prob. 80PCh. 22 - Prob. 81PCh. 22 - Consider an oil-to-oil double-pipe heat exchanger...Ch. 22 - Hot water enters a double-pipe counter-flow...Ch. 22 - Hot water (cph = 4188 J/kg·K) with mass flow rate...Ch. 22 - Prob. 85PCh. 22 - Cold water (cp = 4180 J/kg·K) leading to a shower...Ch. 22 - Prob. 89PCh. 22 - Prob. 90PCh. 22 - Prob. 91PCh. 22 - Prob. 92PCh. 22 - Prob. 93PCh. 22 - Prob. 94PCh. 22 - Prob. 95PCh. 22 - Air (cp = 1005 J/kg·K) enters a cross-flow heat...Ch. 22 - A cross-flow heat exchanger with both fluids...Ch. 22 - Prob. 98PCh. 22 - Prob. 99PCh. 22 - Oil in an engine is being cooled by air in a...Ch. 22 - Prob. 101PCh. 22 - Prob. 102PCh. 22 - Prob. 103PCh. 22 - Water (cp = 4180 J/kg·K) enters the...Ch. 22 - Prob. 105PCh. 22 - Prob. 106PCh. 22 - Prob. 107PCh. 22 - Prob. 109PCh. 22 - Consider the flow of saturated steam at 270.1 kPa...Ch. 22 - Prob. 111RQCh. 22 - Prob. 112RQCh. 22 - Prob. 113RQCh. 22 - A shell-and-tube heat exchanger with 1-shell pass...Ch. 22 - Prob. 115RQCh. 22 - Prob. 116RQCh. 22 - Prob. 117RQCh. 22 - Prob. 118RQCh. 22 - A shell-and-tube heat exchanger with two-shell...Ch. 22 - Saturated water vapor at 100°C condenses in the...Ch. 22 - Prob. 121RQCh. 22 - Prob. 122RQCh. 22 - Prob. 123RQCh. 22 - Prob. 124RQCh. 22 - Prob. 125RQCh. 22 - A cross-flow heat exchanger with both fluids...Ch. 22 - In a chemical plant, a certain chemical is heated...Ch. 22 - Prob. 128RQCh. 22 - Prob. 129RQCh. 22 - Prob. 130RQCh. 22 - Prob. 134DEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Auto Controls A union feedback control system has the following open loop transfer function where k>0 is a variable proportional gain i. for K = 1 , derive the exact magnitude and phase expressions of G(jw). ii) for K = 1 , identify the gaincross-over frequency (Wgc) [where IG(jo))| 1] and phase cross-overfrequency [where <G(jw) = - 180]. You can use MATLAB command "margin" to obtain there quantities. iii) Calculate gain margin (in dB) and phase margin (in degrees) ·State whether the closed-loop is stable for K = 1 and briefly justify your answer based on the margin . (Gain marginPhase margin) iv. what happens to the gain margin and Phase margin when you increase the value of K?you You can use for loop in MATLAB to check that.Helpful matlab commands : if, bode, margin, rlocus NO COPIED SOLUTIONSarrow_forwardThe 120 kg wheel has a radius of gyration of 0.7 m. A force P with a magnitude of 50 N is applied at the edge of the wheel as seen in the diagram. The coefficient of static friction is 0.3, and the coefficient of kinetic friction is 0.25. Find the acceleration and angular acceleration of the wheel.arrow_forwardAuto Controls Using MATLAB , find the magnitude and phase plot of the compensators NO COPIED SOLUTIONSarrow_forward
- 4-81 The corner shown in Figure P4-81 is initially uniform at 300°C and then suddenly exposed to a convection environment at 50°C with h 60 W/m². °C. Assume the = 2 solid has the properties of fireclay brick. Examine nodes 1, 2, 3, 4, and 5 and deter- mine the maximum time increment which may be used for a transient numerical calculation. Figure P4-81 1 2 3 4 1 cm 5 6 1 cm 2 cm h, T + 2 cmarrow_forwardAuto Controls A union feedback control system has the following open loop transfer function where k>0 is a variable proportional gain i. for K = 1 , derive the exact magnitude and phase expressions of G(jw). ii) for K = 1 , identify the gaincross-over frequency (Wgc) [where IG(jo))| 1] and phase cross-overfrequency [where <G(jw) = - 180]. You can use MATLAB command "margin" to obtain there quantities. iii) Calculate gain margin (in dB) and phase margin (in degrees) ·State whether the closed-loop is stable for K = 1 and briefly justify your answer based on the margin . (Gain marginPhase margin) iv. what happens to the gain margin and Phase margin when you increase the value of K?you You can use for loop in MATLAB to check that.Helpful matlab commands : if, bode, margin, rlocus NO COPIED SOLUTIONSarrow_forwardAuto Controls Hand sketch the root Focus of the following transfer function How many asymptotes are there ?what are the angles of the asymptotes?Does the system remain stable for all values of K NO COPIED SOLUTIONSarrow_forward
- Please draw the section view of the following problemsarrow_forward7) Please draw the front, top and side view for the following object. Please cross this line outarrow_forwardA 10-kg box is pulled along P,Na rough surface by a force P, as shown in thefigure. The pulling force linearly increaseswith time, while the particle is motionless att = 0s untilit reaches a maximum force of100 Nattimet = 4s. If the ground has staticand kinetic friction coefficients of u, = 0.6 andHU, = 0.4 respectively, determine the velocityof the A 1 0 - kg box is pulled along P , N a rough surface by a force P , as shown in the figure. The pulling force linearly increases with time, while the particle is motionless at t = 0 s untilit reaches a maximum force of 1 0 0 Nattimet = 4 s . If the ground has static and kinetic friction coefficients of u , = 0 . 6 and HU , = 0 . 4 respectively, determine the velocity of the particle att = 4 s .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License