For Exercises 45-52, determine if the graph can represent a polynomial function. If so. Assume that the end behaviour and all turning points are represented in the graph. a. Determine the minimum degree of the polynomial. b. Determine whether the leading coefficient is positive or negative based on the end behaviour and whether the degree of the polynomial is odd or even. c. Approximate the real zeros of the function, and determine if their multiplicities are even or odd.
For Exercises 45-52, determine if the graph can represent a polynomial function. If so. Assume that the end behaviour and all turning points are represented in the graph. a. Determine the minimum degree of the polynomial. b. Determine whether the leading coefficient is positive or negative based on the end behaviour and whether the degree of the polynomial is odd or even. c. Approximate the real zeros of the function, and determine if their multiplicities are even or odd.
Solution Summary: The author explains that the graph represents a polynomial function. The graph is smooth and continuous.
For Exercises 45-52, determine if the graph can represent a polynomial function. If so. Assume that the end behaviour and all turning points are represented in the graph.
a. Determine the minimum degree of the polynomial.
b. Determine whether the leading coefficient is positive or negative based on the end behaviour and whether the degree of the polynomial is odd or even.
c. Approximate the real zeros of the function, and determine if their multiplicities are even or odd.
8. For x>_1, the continuous function g is decreasing and positive. A portion of the graph of g is shown above. For n>_1, the nth term of the series summation from n=1 to infinity a_n is defined by a_n=g(n). If intergral 1 to infinity g(x)dx converges to 8, which of the following could be true? A) summation n=1 to infinity a_n = 6. B) summation n=1 to infinity a_n =8. C) summation n=1 to infinity a_n = 10. D) summation n=1 to infinity a_n diverges.
PLEASE SHOW ME THE RIGHT ANSWER/SOLUTION
SHOW ME ALL THE NEDDED STEP
13: If the perimeter of a square is shrinking at a rate of 8 inches per second, find the rate at which its area is changing when its area is 25 square inches.
DO NOT GIVE THE WRONG ANSWER
SHOW ME ALL THE NEEDED STEPS
11: A rectangle has a base that is growing at a rate of 3 inches per second and a height that is shrinking at a rate of one inch per second. When the base is 12 inches and the height is 5 inches, at what rate is the area of the rectangle changing?
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.