Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
15th Edition
ISBN: 9781305289963
Author: Debora M. Katz
Publisher: Cengage Custom Learning
bartleby

Videos

Question
Book Icon
Chapter 22, Problem 42PQ

(a)

To determine

The change in entropy of the cold reservoir.

(a)

Expert Solution
Check Mark

Answer to Problem 42PQ

The change in entropy of the cold reservoir is 64.2J/K.

Explanation of Solution

Write the expression for the change in entropy.

    ΔS=ΔQT

Here, ΔS is the change in entropy, ΔQ is the energy transferred, and T is the temperature.

Conclusion:

Substitute 2.35atm for P, 0.340m3 for Vf , and 0.525m3 for Vi to find W.

    W=(2.35atm)(0.340m30.525m3)=(2.35atm)(1.01×105Pa1atm)(0.340m30.525m3)=4.40×104J

Therefore, the work done on the gas is 4.40×104J.

(b)

To determine

The heat transferred when a monoatomic carbon gas undergoes a constant pressure process.

(b)

Expert Solution
Check Mark

Answer to Problem 42PQ

The heat transferred when a monoatomic carbon gas undergoes a constant pressure process

is 1.10×105J

Explanation of Solution

Write the expression initial temperature from ideal gas equation.

    Ti=PVinR                                                                                                                      (I)

Here, Ti is the initial temperature, n is the number of moles, and R is the ideal gas constant.

Write the expression final temperature from ideal gas equation.

    Tf=PVfnR                                                                                                                   (II)

Here, Tf is the final temperature.

Write the expression for the heat transfer.

    QP=nCP(TfTi)                                                                                                   (III)

Here, QP is the amount of heat transfer and CP is the specific heat of the monoatomic gas at constant pressure.

For monoatomic gas,

    CP=52R                                                                                                                (IV)

Use (I), (II),(IV) to rewrite (III).

    QP=n(52R)(PVfnRPVinR)=52P(VfVi)                                                                                   (V)

Conclusion:

Substitute 2.35atm for P, 0.340m3 for Vf , and 0.525m3 for Vi to find W.

    W=(52)(2.35atm)(0.340m30.525m3)=(52)(2.35atm)(1.01×105Pa1atm)(0.340m30.525m3)=1.10×105J

Therefore, the heat transferred when a monoatomic carbon gas undergoes a constant pressure process is 1.10×105J.

(c)

To determine

The change in entropy.

(c)

Expert Solution
Check Mark

Answer to Problem 42PQ

The change in entropy is 271J/K

Explanation of Solution

Write the expression for change in entropy.

    ΔS=ifn(52R)dTT=n(52R)ifdTT=n(52R)[ln(T)]if=n(52R)ln(Tf)ln(Ti)=n(52R)ln(TfTi)                                                                                  (VI)

Here, ΔS is the change in entropy.

Use (I) and (II) to rewrite (VI).

    ΔS=n(52R)ln(PVfnRPVinR)=n(52R)ln(VfVi)                                                                                        (VII)

Conclusion:

Substitute 30.0mol for n , 8.314JmolK for R , 0.340m3 for Vf , and 0.525m3 for Vi  in (VII) to find QP.

    QP=(30.0mol)(52)(8.314JmolK)ln(0.340m30.525m3)=270.9J/K271J/K

Therefore, the coefficient of performance of an ideal heat pump is 271J/K

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You have just bought a new bicycle. On your first riding trip, it seems that the bike comes to rest relatively quickly after you stop pedaling and let the bicycle coast on flat ground. You call the bicycle shop from which you purchased the vehicle and describe the problem. The technician says that they will replace the bearings in the wheels or do whatever else is necessary if you can prove that the frictional torque in the axle of the wheels is worse than -0.02 N . m. At first, you are discouraged by the technical sound of what you have been told and by the absence of any tool to measure torque in your garage. But then you remember that you are taking a physics class! You take your bike into the garage, turn it upside down and start spinning the wheel while you think about how to determine the frictional torque. The driveway outside the garage had a small puddle, so you notice that droplets of water are flying off the edge of one point on the tire tangentially, including drops that…
2nd drop down is "up" or "down"
Romeo (79.0 kg) entertains Juliet (57.0 kg) by playing his guitar from the rear of their boat at rest in still water, 2.70 m away from Juliet, who is in the front of the boat. After the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a kiss on Romeo's cheek. (a) How far (in m) does the 81.0 kg boat move toward the shore it is facing? m (b) What If? If the lovers both walk toward each other and meet at the center of the boat, how far (in m) and in what direction does the boat now move? magnitude m direction ---Select---

Chapter 22 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 22 - Prob. 6PQCh. 22 - An engine with an efficiency of 0.36 can supply a...Ch. 22 - Prob. 8PQCh. 22 - Prob. 9PQCh. 22 - Prob. 10PQCh. 22 - Prob. 11PQCh. 22 - Prob. 12PQCh. 22 - Prob. 13PQCh. 22 - Prob. 14PQCh. 22 - Prob. 15PQCh. 22 - Prob. 16PQCh. 22 - Prob. 17PQCh. 22 - Prob. 18PQCh. 22 - Prob. 19PQCh. 22 - Prob. 20PQCh. 22 - Prob. 21PQCh. 22 - In 1816, Robert Stirling, a Scottish minister,...Ch. 22 - Prob. 23PQCh. 22 - Prob. 24PQCh. 22 - Prob. 25PQCh. 22 - Prob. 26PQCh. 22 - Prob. 27PQCh. 22 - Prob. 28PQCh. 22 - Prob. 29PQCh. 22 - Prob. 30PQCh. 22 - Prob. 31PQCh. 22 - Prob. 32PQCh. 22 - Prob. 33PQCh. 22 - Prob. 34PQCh. 22 - Prob. 35PQCh. 22 - Estimate the change in entropy of the Universe if...Ch. 22 - Prob. 37PQCh. 22 - Prob. 38PQCh. 22 - Prob. 39PQCh. 22 - Prob. 40PQCh. 22 - Prob. 41PQCh. 22 - Prob. 42PQCh. 22 - Prob. 43PQCh. 22 - Prob. 44PQCh. 22 - Prob. 45PQCh. 22 - Prob. 46PQCh. 22 - Prob. 47PQCh. 22 - Prob. 48PQCh. 22 - Prob. 49PQCh. 22 - Prob. 50PQCh. 22 - Prob. 51PQCh. 22 - Prob. 52PQCh. 22 - Prob. 53PQCh. 22 - Prob. 54PQCh. 22 - Prob. 55PQCh. 22 - Prob. 56PQCh. 22 - What is the entropy of a freshly shuffled deck of...Ch. 22 - Prob. 58PQCh. 22 - Prob. 59PQCh. 22 - Prob. 60PQCh. 22 - Prob. 61PQCh. 22 - Prob. 62PQCh. 22 - Prob. 63PQCh. 22 - Prob. 64PQCh. 22 - Prob. 65PQCh. 22 - Prob. 66PQCh. 22 - Prob. 67PQCh. 22 - Prob. 68PQCh. 22 - Prob. 69PQCh. 22 - Prob. 70PQCh. 22 - A system consisting of 10.0 g of water at a...Ch. 22 - Prob. 72PQCh. 22 - Figure P22.73 illustrates the cycle ABCA for a...Ch. 22 - Prob. 74PQCh. 22 - Prob. 75PQCh. 22 - Prob. 76PQCh. 22 - Prob. 77PQCh. 22 - Prob. 78PQCh. 22 - Prob. 79PQCh. 22 - Prob. 80PQCh. 22 - Prob. 81PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY