Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 22, Problem 42PQ

(a)

To determine

The change in entropy of the cold reservoir.

(a)

Expert Solution
Check Mark

Answer to Problem 42PQ

The change in entropy of the cold reservoir is 64.2J/K.

Explanation of Solution

Write the expression for the change in entropy.

    ΔS=ΔQT

Here, ΔS is the change in entropy, ΔQ is the energy transferred, and T is the temperature.

Conclusion:

Substitute 2.35atm for P, 0.340m3 for Vf , and 0.525m3 for Vi to find W.

    W=(2.35atm)(0.340m30.525m3)=(2.35atm)(1.01×105Pa1atm)(0.340m30.525m3)=4.40×104J

Therefore, the work done on the gas is 4.40×104J.

(b)

To determine

The heat transferred when a monoatomic carbon gas undergoes a constant pressure process.

(b)

Expert Solution
Check Mark

Answer to Problem 42PQ

The heat transferred when a monoatomic carbon gas undergoes a constant pressure process

is 1.10×105J

Explanation of Solution

Write the expression initial temperature from ideal gas equation.

    Ti=PVinR                                                                                                                      (I)

Here, Ti is the initial temperature, n is the number of moles, and R is the ideal gas constant.

Write the expression final temperature from ideal gas equation.

    Tf=PVfnR                                                                                                                   (II)

Here, Tf is the final temperature.

Write the expression for the heat transfer.

    QP=nCP(TfTi)                                                                                                   (III)

Here, QP is the amount of heat transfer and CP is the specific heat of the monoatomic gas at constant pressure.

For monoatomic gas,

    CP=52R                                                                                                                (IV)

Use (I), (II),(IV) to rewrite (III).

    QP=n(52R)(PVfnRPVinR)=52P(VfVi)                                                                                   (V)

Conclusion:

Substitute 2.35atm for P, 0.340m3 for Vf , and 0.525m3 for Vi to find W.

    W=(52)(2.35atm)(0.340m30.525m3)=(52)(2.35atm)(1.01×105Pa1atm)(0.340m30.525m3)=1.10×105J

Therefore, the heat transferred when a monoatomic carbon gas undergoes a constant pressure process is 1.10×105J.

(c)

To determine

The change in entropy.

(c)

Expert Solution
Check Mark

Answer to Problem 42PQ

The change in entropy is 271J/K

Explanation of Solution

Write the expression for change in entropy.

    ΔS=ifn(52R)dTT=n(52R)ifdTT=n(52R)[ln(T)]if=n(52R)ln(Tf)ln(Ti)=n(52R)ln(TfTi)                                                                                  (VI)

Here, ΔS is the change in entropy.

Use (I) and (II) to rewrite (VI).

    ΔS=n(52R)ln(PVfnRPVinR)=n(52R)ln(VfVi)                                                                                        (VII)

Conclusion:

Substitute 30.0mol for n , 8.314JmolK for R , 0.340m3 for Vf , and 0.525m3 for Vi  in (VII) to find QP.

    QP=(30.0mol)(52)(8.314JmolK)ln(0.340m30.525m3)=270.9J/K271J/K

Therefore, the coefficient of performance of an ideal heat pump is 271J/K

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).
1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]
2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]

Chapter 22 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 22 - Prob. 6PQCh. 22 - An engine with an efficiency of 0.36 can supply a...Ch. 22 - Prob. 8PQCh. 22 - Prob. 9PQCh. 22 - Prob. 10PQCh. 22 - Prob. 11PQCh. 22 - Prob. 12PQCh. 22 - Prob. 13PQCh. 22 - Prob. 14PQCh. 22 - Prob. 15PQCh. 22 - Prob. 16PQCh. 22 - Prob. 17PQCh. 22 - Prob. 18PQCh. 22 - Prob. 19PQCh. 22 - Prob. 20PQCh. 22 - Prob. 21PQCh. 22 - In 1816, Robert Stirling, a Scottish minister,...Ch. 22 - Prob. 23PQCh. 22 - Prob. 24PQCh. 22 - Prob. 25PQCh. 22 - Prob. 26PQCh. 22 - Prob. 27PQCh. 22 - Prob. 28PQCh. 22 - Prob. 29PQCh. 22 - Prob. 30PQCh. 22 - Prob. 31PQCh. 22 - Prob. 32PQCh. 22 - Prob. 33PQCh. 22 - Prob. 34PQCh. 22 - Prob. 35PQCh. 22 - Estimate the change in entropy of the Universe if...Ch. 22 - Prob. 37PQCh. 22 - Prob. 38PQCh. 22 - Prob. 39PQCh. 22 - Prob. 40PQCh. 22 - Prob. 41PQCh. 22 - Prob. 42PQCh. 22 - Prob. 43PQCh. 22 - Prob. 44PQCh. 22 - Prob. 45PQCh. 22 - Prob. 46PQCh. 22 - Prob. 47PQCh. 22 - Prob. 48PQCh. 22 - Prob. 49PQCh. 22 - Prob. 50PQCh. 22 - Prob. 51PQCh. 22 - Prob. 52PQCh. 22 - Prob. 53PQCh. 22 - Prob. 54PQCh. 22 - Prob. 55PQCh. 22 - Prob. 56PQCh. 22 - What is the entropy of a freshly shuffled deck of...Ch. 22 - Prob. 58PQCh. 22 - Prob. 59PQCh. 22 - Prob. 60PQCh. 22 - Prob. 61PQCh. 22 - Prob. 62PQCh. 22 - Prob. 63PQCh. 22 - Prob. 64PQCh. 22 - Prob. 65PQCh. 22 - Prob. 66PQCh. 22 - Prob. 67PQCh. 22 - Prob. 68PQCh. 22 - Prob. 69PQCh. 22 - Prob. 70PQCh. 22 - A system consisting of 10.0 g of water at a...Ch. 22 - Prob. 72PQCh. 22 - Figure P22.73 illustrates the cycle ABCA for a...Ch. 22 - Prob. 74PQCh. 22 - Prob. 75PQCh. 22 - Prob. 76PQCh. 22 - Prob. 77PQCh. 22 - Prob. 78PQCh. 22 - Prob. 79PQCh. 22 - Prob. 80PQCh. 22 - Prob. 81PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY