![Simplified Engineering for Architects and Builders, 12/E (HB-2016)](https://www.bartleby.com/isbn_cover_images/9781118975046/9781118975046_largeCoverImage.gif)
Simplified Engineering for Architects and Builders, 12/E (HB-2016)
12th Edition
ISBN: 9781118975046
Author: AMBROSE J
Publisher: Wiley,,Hoboken : Wiley, 2016
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.2, Problem 3P
To determine
Find the modulus of elasticity (E) of the steel.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
An urban watershed in Jefferson County is shown in Figure 1 below, along with the travel paths from the
most remote points in each subarea. The details of the subareas are given in Table 1 below. Determine
the 50 year peak flow for the drainage outlet G. Use the IDF chart for Jefferson County that is shown
below. Use the NRCS Method (TR55) to determine time of concentration and estimate runoff coefficients
using Table 15.2.3 (provided in Lesson Notes).
Figure 1
Table 1
No Area
(acres)
Туре
Path Length Slope
(ft) (%)
1
24 Grass, Fair Condition AE
1600 4
2
15
Rangeland - Natural BF
1490 3
B
G
A
A
Provide the requested values. Show your work, don't forget physical units.
A
A
3'-0"
5'-0"
500 plf
5000 lbs
10'-0"
Max moment:
Reactions at A and B:
B
Moment in the middle span:
5 K
Shear at 2'-0":
4
10'-0"
5'-0"
Max Moment:
B
Where is Max Moment occuring?
Max Deflection (in inches):
Ix= 250 in
E= 29.000 ksi
Where is Max Deflection occuring?
Note: be careful with physical units; check that your answer makes sense
5'-0"
10'-0"
1 kip
500 plf
B
Max Moment:
Note: Make use of the superposition principle
5. A gate is used to hold water as shown. The gate is rectangular and is 8-ft wide. Neglect
the weight of the gate. Determine at what depth the gate is just about to open.
5000 lbf
☑
15 ft
Hinge
60°
Chapter 2 Solutions
Simplified Engineering for Architects and Builders, 12/E (HB-2016)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Given a small town with three transportation analysis zones and origin-destination survey results, provide a trip distribution calculation using the gravity model for two iterations; assume Kij = 1. The following table shows the number of productions and attractions in each zone. Zone 1 2 3 Total Productions 250 480 270 1,000 Attractions 435 180 385 1,000 The survey's results for the zones' travel time in minutes were as follows. To Zone 1 2 3 1 6 4 2 From 2 2 8 3 3 1 3 5 The following table shows travel time versus friction factor. Time (min) 1 2 3 4 5 6 7 8 Friction Factor 82 52 50 41 39 26 20 13 Compute the trip distribution calculations for the first iteration. Zone-to-Zone Trips: First Iteration To Zone 1 2 3 Computed P Given P 1 From 2 3 Computed A Given A Compute the trip distribution calculations for the second iteration. Zone-to-Zone Trips: Second Iteration To Zone 1 2 3 Computed P Given P 1 From 2 3 Computed A Given A Need Help? Read It Watch Itarrow_forwardThe Jeffersonville Transportation Study area has been divided into four traffic zones. The following data have been compiled. Travel Time (min) District Productions Attractions 1 2 3 4 1 3,000 3,000 5 8 12 15 2 1,000 400 8 5 10 8 3 2,000 4,500 12 10 5 7 4 2,500 600 15 8 7 5 Travel Time 1 5 6 7 8 10 12 15 Fij 2.00 1.30 1.10 1.00 0.95 0.85 0.80 0.65 After the first iteration, the trip table was as follows. District 1 2 3 4 Ps 1 1,415 138 2 367 67 1,306 141 493 73 3 522 4 641 74 125 As 2,945 404 1,478 256 4,550 601 3,000 1,000 1,273 131 2,000 2,500 Complete the second iteration. District 1 2 3 4 Computed A 1 2 3 4 Computed Parrow_forward3. The 200-kg, 5 m-wide rectangular gate shown in Fig. I is hinged at B and leans against the floor at A making an angle of 45° with the horizontal. The gate is to be opened from its lower edge by applying a normal force at its center. Determine the minimum force R required to open the water gate. 2 Water Fig. 1 1450 3.5mm Rarrow_forward
- 4. Calculate the magnitude and direction of the resultant pressure-force on the gate as shown in Fig. 2. Assume the width of the gate is 1 ft. 12 ft r=10 ft 8 ft Fig. 2arrow_forward6. Figure 4 shows a segment gate of semicircular cross section which is 10 ft long and 8 ft in diameter. Water stands at a depth of 8 ft on the left-hand side and 4 ft on the right-hand side. Determine both the magnitude and the direction of the total (net) hydrostatic force on the gate. 8.00 t 4.00arrow_forwardThe amount of lumber produced and consumed by three states is shown in the following table. Tons of Lumber Produced and Consumed Per Year (Tons) State Lumber Produced 1 2 3 5,880 3,300 9,800 Lumber Consumed 980 10,000 8,000 Intrastate shipment distances are 300 miles and interstate distances are 500 miles (between States 1 and 2), 1,000 miles (between States 1 and 3), and 400 miles (between States 2 and 3). Assuming an impedance function of the form 1/d, estimate the tonnage of lumber that will travel between the three states. (Compute enough iterations that the total computed consumption for each state, rounded to the nearest integer, matches the given consumption.) To State 1 2 3 Total 1 2 From 3 Total Need Help? Read It Watch Itarrow_forward
- By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-way slab (supports on two S.S sides shown in figure under the load (P) (all dimensions are in mm). Solve by equilibrium method m m 2000 2000 3000arrow_forwardThe bracket BCD is hinged at C and attached to a control cable at B. Let F₁ = 275 N and F2 = 275 N. F₁ B a=0.18 m C A 0.4 m- 0.4 m- 0.24 m Determine the tension in cable AB. The tension in the cable (T) = N F2arrow_forwardGiven cross-classification data for the Jeffersonville Transportation Study Area in this table, develop the family of cross-classification curves. (Use high = $55,000; medium low = $15,000. Submit a file with a maximum size of 1 MB.) Choose File No file chosen This answer has not been graded yet. Determine the number of trips produced (by purpose) for a traffic zone containing 400 houses with an average household income of $35,000. 1700 HBW HBO NHB × Your response differs from the correct answer by more than 10%. Double check your calculations. trips 1839 x Your response differs from the correct answer by more than 10%. Double check your calculations. trips 1716 x Your response differs from the correct answer by more than 10%. Double check your calculations. trips = $25,000;arrow_forward
- You are given the socioeconomic data for the Jeffersonville Transportation Study Area, as follows. Population = 72,173 Area = 70 sq mi Registered vehicles = 26,685 Single-family housing units = 15,675 Apartment units = 7,567 Retail employment = 5,502 Nonretail employment = 27,324 Student attendance = 28,551 Average household income = $17,500 Transportation analysis zones = 129 The results of the cross-classification analysis are as follows. Total trips produced for study area = 322,150 per day Home-to-work trips: Home-to-nonwork trips: Nonhome-based trips: 13% (41,880) 62% (199,733) 25% (80,537) The attraction rates for the area have been developed using the following assumptions. 100 percent of home-to-work trips go to employment locations. Home-to-nonwork trips are divided into the following types. Visit friends: Shopping: School: Nonretail employment: 10% 60% 10% 20% Nonhome-based trips are divided into the following types. Other employment area (nonretail): Shopping: 60% 40%…arrow_forwardneed helparrow_forwardneed helparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
![Text book image](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Concrete Slab Calculations 006; Author: Jerry Howard;https://www.youtube.com/watch?v=R19jILyBxio;License: Standard Youtube License