COLLEGE PHYSICS,VOLUME 1
COLLEGE PHYSICS,VOLUME 1
2nd Edition
ISBN: 9781319115104
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 22, Problem 36QAP
To determine

(a)

The amplitude of the electric field.

Expert Solution
Check Mark

Answer to Problem 36QAP

The amplitude of the magnetic field is given by,

Bo=0.7μT

Explanation of Solution

Given:

B(x,t)=(0.7μT)sin[(8π×106m1)x(2.40π×1015s1)t]

Formula used:

The magnetic field is given,

B(x,t)=Bocos[kxωt+ϕ]

Where,

B(x,t) =Magnetic field Bo = Amplitude of magnetic field k = Wave number

ω =Angular frequency

ϕ =Phase difference

Calculation:

The magnetic field is given,

B(x,t)=Bocos[kxωt+ϕ]...(1)

B(x,t)=(0.7μT)sin[(8π×106m1)x(2.40π×1015s1)t]B(x,t)=(0.7μT)cos[(8π×106m1)x(2.40π×1015s1)t+ϕ]...(2)

Comparing equation (1) and (2) we get,

Bo=0.7μT

Thus, the amplitude of the magnetic field is given by,

Bo=0.7μT

To determine

(b)

The speed of the electromagnetic wave.

Expert Solution
Check Mark

Answer to Problem 36QAP

The speed of the electromagnetic wave is, c=3×108m/s

Explanation of Solution

Given:

B(x,t)=(0.7μT)sin[(8π×106m1)x(2.40π×1015s1)t]

Formula used:

The speed of electromagnetic wave is is,

c=ωk

Where,

c =Speed of electromagnetic wavek = Wave number

ω =Angular frequency

Calculation:

The magnetic field is given,

B(x,t)=Bocos[kxωt+ϕ]...(1)

B(x,t)=(0.7μT)sin[(8π×106m1)x(2.40π×1015s1)t]B(x,t)=(0.7μT)cos[(8π×106m1)x(2.40π×1015s1)t+ϕ]...(2)

Comparing equation (1) and (2) we get,

Bo=0.7μTω=2.40π×1015s1k=8π×106m1

Thus, the speed of the magnetic field is given by,

c=ωkc=2.40π×10158π×106c=3×108m/s

To determine

(c)

The frequency of the electromagnetic wave.

Expert Solution
Check Mark

Answer to Problem 36QAP

The frequency of the electromagnetic wave is, f=1.200×1014Hz

Explanation of Solution

Given:

B(x,t)=(0.7μT)sin[(8π×106m1)x(2.40π×1015s1)t]

Formula used:

The angular frequency of electromagnetic wave is is,

ω=2πf

Where,

ω =Angular frequency

f =Frequency

Calculation:

The magnetic field is given,

B(x,t)=Bocos[kxωt+ϕ]...(1)

B(x,t)=(0.7μT)sin[(8π×106m1)x(2.40π×1015s1)t]B(x,t)=(0.7μT)cos[(8π×106m1)x(2.40π×1015s1)t+ϕ]...(2)

Comparing equation (1) and (2) we get,

Bo=0.7μTω=2.40π×1015s1k=8π×106m1

The angular frequency of electromagnetic wave is is,

ω=2πf2.40π×1015=2πff=2.40π×10152πf=1.200×1014Hz

To determine

(d)

The period of the electromagnetic wave.

Expert Solution
Check Mark

Answer to Problem 36QAP

The period of the electromagnetic wave is, T=8.33×1015s

Explanation of Solution

Given:

B(x,t)=(0.7μT)sin[(8π×106m1)x(2.40π×1015s1)t]

Frequency, f=1.200×1014Hz

Formula used:

The period of electromagnetic wave is,

T=1f

Where,

T =Period

f =Frequency

Calculation:

The period of electromagnetic wave is,

T=1fT=11.200×1014T=8.33×1015s

To determine

(e)

The wavelength of the electromagnetic wave.

Expert Solution
Check Mark

Answer to Problem 36QAP

The wavelength of the electromagnetic wave is, λ=0.25×106m

Explanation of Solution

Given:

B(x,t)=(0.7μT)sin[(8π×106m1)x(2.40π×1015s1)t]

Formula used:

The wave number of electromagnetic waves is,

k=2πλ

Where,

k =Wave-number

λ =Wavelength

Calculation:

The magnetic field is given,

B(x,t)=Bocos[kxωt+ϕ]...(1)

B(x,t)=(0.7μT)sin[(8π×106m1)x(2.40π×1015s1)t]B(x,t)=(0.7μT)cos[(8π×106m1)x(2.40π×1015s1)t+ϕ]...(2)

Comparing equation (1) and (2) we get,

Bo=0.7μTω=2.40π×1015s1k=8π×106m1

The wave number of electromagnetic waves is,

k=2πλ8π×106=2πλλ=2π8π×106λ=0.25×106m

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Solve the linear system of equations attached using Gaussian elimination (not Gauss-Jordan) and back subsitution. Remember that: A matrix is in row echelon form if Any row that consists only of zeros is at the bottom of the matrix. The first non-zero entry in each other row is 1. This entry is called aleading 1. The leading 1 of each row, after the first row, lies to the right of the leading 1 of the previous row.
PRIMERA EVALUACIÓN SUMATIVA 10. Determina la medida de los ángulos in- teriores coloreados en cada poligono. ⚫ Octágono regular A 11. Calcula es número de lados qu poligono regular, si la medida quiera de sus ángulos internos • a=156° A= (-2x+80 2 156 180- 360 0 = 24-360 360=24° • a = 162° 1620-180-360 6=18-360 360=19 2=360= 18 12. Calcula las medida ternos del cuadrilá B X+5 x+10 A X+X+ Sx+6 5x=3 x=30 0 лаб • Cuadrilátero 120° 110° • α = 166° 40' 200=180-360 0 = 26-360 360=20 ひ=360 20 18 J 60° ⚫a=169° 42' 51.43" 169.4143180-340 0 = 10.29 54-360 360 10.2857 2=360 10.2857 @Sa
Please help I'm a working mom trying to help my son last minute (6th grader)! Need help with the blank ones and check the ones he got with full calculation so we can use it to study! Especially the mixed number fractions cause I'm rusty. Thanks in advance!
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY