If the normal strain is defined in reference to the final length Δs′, that is,
Instead of in reference to the original length, Eq.2–2, show that the difference in these strains is represented as a second-order term, namely, ε − ε′ = εε′.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Mechanics of Materials
- The state of plane strain on an element is represented by the following components: Ex =D340 x 10-6, ɛ, = , yxy Ey =D110 x 10-6, 3D180 x10-6 ху Draw Mohr's circle to represent this state of strain. Use Mohrs circle to obtain the principal strains and principal plane.arrow_forwardThe strain components Ex, Ey, and Yxy are given for a point in a body subjected to plane strain. Using Mohr's circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle 0p, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch. Ex = 0 μE, Ey = 310 με, Yxy = 280 μrad. Enter the angle such that -45° ≤ 0,≤ +45° Answer: Ep1 = Ep2 = Ymax in-plane = Yabsolute max. = 0p = με με urad uradarrow_forwardThe state of strain at the point on the pin leaf has components of ϵx=200(10−6)ϵx=200(10−6) , ϵy=180(10−6)ϵy=180(10−6) , and γxy=−300(10−6)γxy=−300(10−6) . (Figure 1) -Use the strain transformation equations and determine the normal strain in the xx direction on an element oriented at an angle of θ=−55∘θ=−55∘ clockwise from the original position. -Determine the shear strain along the xy plain Determine the normal strain in the y direction.arrow_forward
- The strain components for a point in a body subjected to plane strain are εx = -480 με, εy = -750με and γxy = -914 μrad. Using Mohr’s circle, determine the principal strains (εp1 > εp2), the maximum inplane shear strain γip, and the absolute maximum shear strain γmax at the point. Show the angle θp (counterclockwise is positive, clockwise is negative), the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch.arrow_forwardThe strain components for a point in a body subjected to plane strain are εx = -270 με, εy = 730με and γxy = -799 μrad. Using Mohr’s circle, determine the principal strains (εp1 > εp2), the maximum inplane shear strain γip, and the absolute maximum shear strain γmax at the point. Show the angle θp (counterclockwise is positive, clockwise is negative), the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch.arrow_forwardThe deviatoric principal strains at a point in a loaded member are ₁, 2, 3. Show that ₁ + ₂ + 3 = 0 (ej)² + (e₂)² + (ez)² = [(e₁ = €₂)² + (€2 − €3)² + (€3 − €₁)²] -arrow_forward
- The state of strain in a plane element is ex =-200 x 10-6, Ey = 0, and yxy = 75 × 10-6 , as shown below. Determine the equivalent state of strain which represents (a) the principal strains (b) the maximum in-plane shear strain and the associated average normal strain. Specify the orientation of the corresponding elements for these states of strain with respect to the original element. y Yxy 2 dy Yxy FExdx dxarrow_forwardThe state of strain at the point on the gear tooth has components €x = 850(106), €y = 480(106), Yxy = 650(106). Use the strain-transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within the x-y plane.arrow_forwardFor the strain rate shown below, determine the principal strains [εxx ε = Ey Ex Exy Eyy Exy Exs Eyz W ti [-1.1 0.5 01 0.5 2.4 0 0 0 0 X 10-4arrow_forward
- The strain components εx, εy, and γxy are given for a point in a body subjected to plane strain. Using Mohr’s circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle θp, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch. εx = 350 με, εy = -540 με, γxy = -890 μrad. Enter the angle such that -45°≤θp≤ +45°.arrow_forwardFor some element, the displacement is obtained as u = [1 + 3x +4y +5xy]x10^(-3) mm. The normal strain along x-axis at point (1.2, 0.8) m located inside the element isarrow_forwardThe strain components εx, εy, and γxy are given for a point in a body subjected to plane strain. Using Mohr’s circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle θp, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch.εx = 0 με, εy = 310 με, γxy = 280 μrad. Enter the angle such that -45° ≤ θp ≤ +45°.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY