
Murder, she wrote: The following frequency distribution presents the number of murders (including negligent manslaughter) per 100,000 population for each U.S. city with population over 250,000 in a recent year.
- How many classes are there?
- What is the class width?
- What are the class limits?
- Construct a frequency histogram.
- Construct a relative frequency distribution.
- Construct a relative frequency histogram.
- What percentage of cities had murder rates less than 10 per 100,000 population?
- What percentage of cities had murder rates of 30 or more per 100,000 population?
a.

To find:The number of classes.
Answer to Problem 28E
The number of classes is 11.
Explanation of Solution
Given information:The following frequency distribution presents the number of murders per 100,000 population of each U.S. city with population over 250,000 in a recent year.
Murder rate | Frequency |
0.0-4.9 | 21 |
5.0-9.9 | 23 |
10-14.9 | 12 |
15.0-19.9 | 6 |
20.0-24.9 | 5 |
25.0-29.9 | 0 |
30.0-34.9 | 2 |
35.0-39.9 | 2 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 2 |
Definition used:The classes are intervals of equal width that cover all the values that are observed.
Calculation:
From the given table, the classes are
The number of classes is 11.
Hence, the number of classes is 11.
b.

To find:The class width.
Answer to Problem 28E
The class width is 5.
Explanation of Solution
Given information:The following frequency distribution presents the number of murders per 100,000 population of each U.S. city with population over 250,000 in a recent year.
Murder rate | Frequency |
0.0-4.9 | 21 |
5.0-9.9 | 23 |
10-14.9 | 12 |
15.0-19.9 | 6 |
20.0-24.9 | 5 |
25.0-29.9 | 0 |
30.0-34.9 | 2 |
35.0-39.9 | 2 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 2 |
Formula used:
Calculation:
From the given table, the number of classes is 11.
The largest data value is 54.9 and the smallest data value is 0.0.
Thus, each class is an interval with equal width of 5.0.
Hence, the class width is 5.
c.

To find:The class limits.
Answer to Problem 28E
Lower limits: 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0.
Upper limits: 4.9, 9.9, 14.9, 19.9, 24.9, 29.9, 34.9, 39.9, 44.9, 49.9, 54.9.
Explanation of Solution
Given information:The following frequency distribution presents the number of murders per 100,000 population of each U.S. city with population over 250,000 in a recent year.
Murder rate | Frequency |
0.0-4.9 | 21 |
5.0-9.9 | 23 |
10-14.9 | 12 |
15.0-19.9 | 6 |
20.0-24.9 | 5 |
25.0-29.9 | 0 |
30.0-34.9 | 2 |
35.0-39.9 | 2 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 2 |
Definition used:
The lower class limit of a class is the smallest value
that can appear in that class.
The upper class limit of a class is the largest value that can appear in that class.
Calculation:
From the table, we can have the lower limits and upper limits are as follows:
Lower limits: 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0.
Upper limits: 4.9, 9.9, 14.9, 19.9, 24.9, 29.9, 34.9, 39.9, 44.9, 49.9, 54.9.
d.

To construct: A frequency histogram.
Explanation of Solution
Given information:The following frequency distribution presents the number of murders per 100,000 population of each U.S. city with population over 250,000 in a recent year.
Murder rate | Frequency |
0.0-4.9 | 21 |
5.0-9.9 | 23 |
10-14.9 | 12 |
15.0-19.9 | 6 |
20.0-24.9 | 5 |
25.0-29.9 | 0 |
30.0-34.9 | 2 |
35.0-39.9 | 2 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 2 |
Definition used: Histograms based on frequency distributions are called frequency histogram.
Solution:
The frequency histogram for the given data is given by
e.

To construct: A relative frequency distribution.
Explanation of Solution
Given information:The following frequency distribution presents the number of murders per 100,000 population of each U.S. city with population over 250,000 in a recent year.
Murder rate | Frequency |
0.0-4.9 | 21 |
5.0-9.9 | 23 |
10-14.9 | 12 |
15.0-19.9 | 6 |
20.0-24.9 | 5 |
25.0-29.9 | 0 |
30.0-34.9 | 2 |
35.0-39.9 | 2 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 2 |
Formula used:
Solution:
From the given table,
The sum of all frequency is
The table of relative frequency is given by
Murder rate | Frequency | Relative frequency |
0.0-4.9 | 21 | |
5.0-9.9 | 23 | |
10-14.9 | 12 | |
15.0-19.9 | 6 | |
20.0-24.9 | 5 | |
25.0-29.9 | 0 | |
30.0-34.9 | 2 | |
35.0-39.9 | 2 | |
40.0-44.9 | 0 | |
45.0-49.9 | 0 | |
50.0-54.9 | 2 |
f.

To construct: A relative frequency histogram.
Explanation of Solution
Given information:The following frequency distribution presents the number of murders per 100,000 population of each U.S. city with population over 250,000 in a recent year.
Murder rate | Frequency |
0.0-4.9 | 21 |
5.0-9.9 | 23 |
10-14.9 | 12 |
15.0-19.9 | 6 |
20.0-24.9 | 5 |
25.0-29.9 | 0 |
30.0-34.9 | 2 |
35.0-39.9 | 2 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 2 |
Definition used: Histograms based on relative frequency distributions are called relative frequency histogram.
Solution:
Murder rate | Relative frequency |
0.0-4.9 | 0.288 |
5.0-9.9 | 0.315 |
10-14.9 | 0.164 |
15.0-19.9 | 0.082 |
20.0-24.9 | 0.068 |
25.0-29.9 | 0 |
30.0-34.9 | 0.027 |
35.0-39.9 | 0.027 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 0.027 |
Therelative frequency histogram for the given data is given by
g.

To find: The percentage of cities had murder rates less than 10 per 100,00
0 population.
Answer to Problem 28E
The percentage of cities had murder rates less than 10 per 100,000 population.is 60.3%.
Explanation of Solution
Given information:The following frequency distribution presents the number of murders per 100,000 population of each U.S. city with population over 250,000 in a recent year.
Murder rate | Frequency |
0.0-4.9 | 21 |
5.0-9.9 | 23 |
10-14.9 | 12 |
15.0-19.9 | 6 |
20.0-24.9 | 5 |
25.0-29.9 | 0 |
30.0-34.9 | 2 |
35.0-39.9 | 2 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 2 |
Calculation:
The relative frequency table is given by
Murder rate | Relative frequency |
0.0-4.9 | 0.288 |
5.0-9.9 | 0.315 |
10-14.9 | 0.164 |
15.0-19.9 | 0.082 |
20.0-24.9 | 0.068 |
25.0-29.9 | 0 |
30.0-34.9 | 0.027 |
35.0-39.9 | 0.027 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 0.027 |
From the above data, the relative frequencies of murder rates less than 10 per 100,000 populationare 0.288 and 0.315
The sum of all the above relative frequencies is
Then, its percentage is 60.3%
Hence, the percentage of cities had murder rates less than 10 per 100,000 population.is 60.3%.
h.

To find: The percentage of cities had murder rates of 30 or more per 100,000 populations.
Answer to Problem 28E
The percentage of cities had murder rates of 30 or more per 100,000 populations is 8.1%.
Explanation of Solution
Given information:The following frequency distribution presents the number of murders per 100,000 population of each U.S. city with population over 250,000 in a recent year.
Murder rate | Frequency |
0.0-4.9 | 21 |
5.0-9.9 | 23 |
10-14.9 | 12 |
15.0-19.9 | 6 |
20.0-24.9 | 5 |
25.0-29.9 | 0 |
30.0-34.9 | 2 |
35.0-39.9 | 2 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 2 |
Calculation:
The relative frequency table is given by
Murder rate | Relative frequency |
0.0-4.9 | 0.288 |
5.0-9.9 | 0.315 |
10-14.9 | 0.164 |
15.0-19.9 | 0.082 |
20.0-24.9 | 0.068 |
25.0-29.9 | 0 |
30.0-34.9 | 0.027 |
35.0-39.9 | 0.027 |
40.0-44.9 | 0 |
45.0-49.9 | 0 |
50.0-54.9 | 0.027 |
From the above data, the relative frequencies of murder rates of 30 or more per 100,000 populationsare 0.027, 0.027, 0, 0 and 0.027.
The sum of all the above relative frequencies is
Then, its percentage is 8.1%
Hence, the percentage of cities had murder rates of 30 or more per 100,000 populations is 8.1%.
Want to see more full solutions like this?
Chapter 2 Solutions
Elementary Statistics (Text Only)
- if the b coloumn of a z table disappeared what would be used to determine b column probabilitiesarrow_forwardConstruct a model of population flow between metropolitan and nonmetropolitan areas of a given country, given that their respective populations in 2015 were 263 million and 45 million. The probabilities are given by the following matrix. (from) (to) metro nonmetro 0.99 0.02 metro 0.01 0.98 nonmetro Predict the population distributions of metropolitan and nonmetropolitan areas for the years 2016 through 2020 (in millions, to four decimal places). (Let x, through x5 represent the years 2016 through 2020, respectively.) x₁ = x2 X3 261.27 46.73 11 259.59 48.41 11 257.96 50.04 11 256.39 51.61 11 tarrow_forwardIf the average price of a new one family home is $246,300 with a standard deviation of $15,000 find the minimum and maximum prices of the houses that a contractor will build to satisfy 88% of the market valuearrow_forward
- 21. ANALYSIS OF LAST DIGITS Heights of statistics students were obtained by the author as part of an experiment conducted for class. The last digits of those heights are listed below. Construct a frequency distribution with 10 classes. Based on the distribution, do the heights appear to be reported or actually measured? Does there appear to be a gap in the frequencies and, if so, how might that gap be explained? What do you know about the accuracy of the results? 3 4 555 0 0 0 0 0 0 0 0 0 1 1 23 3 5 5 5 5 5 5 5 5 5 5 5 5 6 6 8 8 8 9arrow_forwardA side view of a recycling bin lid is diagramed below where two panels come together at a right angle. 45 in 24 in Width? — Given this information, how wide is the recycling bin in inches?arrow_forward1 No. 2 3 4 Binomial Prob. X n P Answer 5 6 4 7 8 9 10 12345678 8 3 4 2 2552 10 0.7 0.233 0.3 0.132 7 0.6 0.290 20 0.02 0.053 150 1000 0.15 0.035 8 7 10 0.7 0.383 11 9 3 5 0.3 0.132 12 10 4 7 0.6 0.290 13 Poisson Probability 14 X lambda Answer 18 4 19 20 21 22 23 9 15 16 17 3 1234567829 3 2 0.180 2 1.5 0.251 12 10 0.095 5 3 0.101 7 4 0.060 3 2 0.180 2 1.5 0.251 24 10 12 10 0.095arrow_forward
- step by step on Microssoft on how to put this in excel and the answers please Find binomial probability if: x = 8, n = 10, p = 0.7 x= 3, n=5, p = 0.3 x = 4, n=7, p = 0.6 Quality Control: A factory produces light bulbs with a 2% defect rate. If a random sample of 20 bulbs is tested, what is the probability that exactly 2 bulbs are defective? (hint: p=2% or 0.02; x =2, n=20; use the same logic for the following problems) Marketing Campaign: A marketing company sends out 1,000 promotional emails. The probability of any email being opened is 0.15. What is the probability that exactly 150 emails will be opened? (hint: total emails or n=1000, x =150) Customer Satisfaction: A survey shows that 70% of customers are satisfied with a new product. Out of 10 randomly selected customers, what is the probability that at least 8 are satisfied? (hint: One of the keyword in this question is “at least 8”, it is not “exactly 8”, the correct formula for this should be = 1- (binom.dist(7, 10, 0.7,…arrow_forwardKate, Luke, Mary and Nancy are sharing a cake. The cake had previously been divided into four slices (s1, s2, s3 and s4). What is an example of fair division of the cake S1 S2 S3 S4 Kate $4.00 $6.00 $6.00 $4.00 Luke $5.30 $5.00 $5.25 $5.45 Mary $4.25 $4.50 $3.50 $3.75 Nancy $6.00 $4.00 $4.00 $6.00arrow_forwardFaye cuts the sandwich in two fair shares to her. What is the first half s1arrow_forward
- Question 2. An American option on a stock has payoff given by F = f(St) when it is exercised at time t. We know that the function f is convex. A person claims that because of convexity, it is optimal to exercise at expiration T. Do you agree with them?arrow_forwardQuestion 4. We consider a CRR model with So == 5 and up and down factors u = 1.03 and d = 0.96. We consider the interest rate r = 4% (over one period). Is this a suitable CRR model? (Explain your answer.)arrow_forwardQuestion 3. We want to price a put option with strike price K and expiration T. Two financial advisors estimate the parameters with two different statistical methods: they obtain the same return rate μ, the same volatility σ, but the first advisor has interest r₁ and the second advisor has interest rate r2 (r1>r2). They both use a CRR model with the same number of periods to price the option. Which advisor will get the larger price? (Explain your answer.)arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL


