University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 22.9DQ
In a conductor, one or more electrons from each atom are free to roam throughout the volume of the conductor. Does this contradict the statement that any excess charge on a solid conductor must reside on its surface? Why or why not?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spherical metallic object with a hole inside initially holds a net
charge of 94.9 nC; the hole is initially charge-free. Then a particle with
a charge of 26.1 nC is placed at the center of the hole (held by a perfect
non-polarizable insulating material). The value of the net charge on the
outer surface of the conductor, upon reaching electrostatic equilibrium, is
most nearly
(A) –68.8 nC.
(B) –121 nC.
(C) 68.8 nC.
(D) 42.7 nC.
(E) 121 nC.
A solid sphere of silver, which is a good conductor, has a spherical cavity at its center. There is a point charge at the center of the cavity. The silver sphere has a charge of +9.00 nC on its outer surface and a charge of -2.00 nC on the surface of the cavity. (a) What is the value of the point charge? (b) If the point charge moved to a different position within the cavity (not at the center), would this affect the total charge on the surface of the cavity or the total charge on the outer surface of the sphere?
(a) Figure (a) shows a nonconducting rod of length L = 5.40 cm and uniform linear charge density λ = +4.41 pC/m. Take V = 0 at infinity.
What is V at point P at distance d = 9.30 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one
half is now negatively charged. Both halves have a linear charge density of magnitude 4.41 pC/m. With V= 0 at infinity, what is V at P?
(a) Number i
(b) Number
i
P
‡ ‡ ‡ ‡ + + + +‡‡ ‡ ‡‡
L/2
L/2
Units
Units
[+ + + ++++G
·L/2
L/2-
Chapter 22 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 22.1 - If all of the dimensions of the box in Fig. 22.2a...Ch. 22.2 - Rank the following surfaces in order from most...Ch. 22.3 - Figure 22.16 shows six point charges that all lie...Ch. 22.4 - You place a known amount of charge Q on the...Ch. 22.5 - A hollow conducting sphere has no net charge....Ch. 22 - A rubber balloon has a single point charge in its...Ch. 22 - Suppose that in Fig. 22.15 both charges were...Ch. 22 - In Fig. 22.15, suppose a third point charge were...Ch. 22 - A certain region of space bounded by an imaginary...Ch. 22 - A spherical Gaussian surface encloses a point...
Ch. 22 - You find a sealed box on your doorstep. You...Ch. 22 - A solid copper sphere has a net positive charge....Ch. 22 - A spherical Gaussian surface encloses a point...Ch. 22 - In a conductor, one or more electrons from each...Ch. 22 - You charge up the Van de Graaff generator shown in...Ch. 22 - Lightning is a flow of electrons. The lightning...Ch. 22 - A solid conductor has a cavity in its interior....Ch. 22 - Explain this statement: In a static situation, the...Ch. 22 - In a certain region of space, the electric field E...Ch. 22 - (a) In a certain region of space, the volume...Ch. 22 - A negative charge Q is placed inside the cavity of...Ch. 22 - A flat sheet of paper of area 0.250 m2 is oriented...Ch. 22 - A flat sheet is in the shape of a rectangle with...Ch. 22 - You measure an electric field of 1.25 106 N/C at...Ch. 22 - It was shown in Example 21.10 (Section 21.5) that...Ch. 22 - A hemispherical surface with radius r in a region...Ch. 22 - The cube in Fig. E22.6 has sides of length L =...Ch. 22 - BIO As discussed in Section 22.5, human nerve...Ch. 22 - The three small spheres shown in Fig. E22.8 carry...Ch. 22 - A charged paint is spread in a very thin uniform...Ch. 22 - A point charge q1 = 4.00 nC is located on the...Ch. 22 - A 6.20 C point charge is at the center of a cube...Ch. 22 - Electric Fields in an Atom. The nuclei of large...Ch. 22 - Two very long uniform lines of charge are parallel...Ch. 22 - A solid metal sphere with radius 0.450 m carries a...Ch. 22 - How many excess electrons must be added to an...Ch. 22 - Some planetary scientists have suggested that the...Ch. 22 - A very long uniform line of charge has charge per...Ch. 22 - The electric field 0.400 m from a very long...Ch. 22 - A hollow, conducting sphere with an outer radius...Ch. 22 - (a) At a distance of 0.200 cm from the center or a...Ch. 22 - The electric field at a distance of 0.145 m from...Ch. 22 - A point charge of 3.00 C is located in the center...Ch. 22 - CP An electron is released from rest at a distance...Ch. 22 - Charge Q is distributed uniformly throughout the...Ch. 22 - A conductor with an inner cavity, like that shown...Ch. 22 - A very large, horizontal, nonconducting sheet of...Ch. 22 - Apply Gausss law to the Gaussian surfaces S2, S3,...Ch. 22 - A square insulating sheet 80.0 cm on a side is...Ch. 22 - An infinitely long cylindrical conductor has...Ch. 22 - Two very large, nonconducting plastic sheets, each...Ch. 22 - CP At time t = 0 a proton is a distance of 0.360 m...Ch. 22 - CP A very small object with mass 8.20 109 kg and...Ch. 22 - CP A small sphere with mass 4.00 106 kg and...Ch. 22 - A cube has sides of length L = 0.300 m. One corner...Ch. 22 - The electric field E in Fig. P22.35 is everywhere...Ch. 22 - CALC In a region of space there is an electric...Ch. 22 - The electric field E1 at one face of a...Ch. 22 - A long line carrying a uniform linear charge...Ch. 22 - The Coaxial Cable. A long coaxial cable consists...Ch. 22 - A very long conducting tube (hollow cylinder) has...Ch. 22 - A very long, solid cylinder with radius R has...Ch. 22 - A Sphere in a Sphere. A solid conducting sphere...Ch. 22 - A solid conducting sphere with radius R that...Ch. 22 - A conducting spherical shell with inner radius a...Ch. 22 - Concentric Spherical Shells. A small conducting...Ch. 22 - Repeat Problem 22.45, but now let the outer shell...Ch. 22 - Prob. 22.47PCh. 22 - A solid conducting sphere with radius R carries a...Ch. 22 - CALC An insulating hollow sphere has inner radius...Ch. 22 - CP Thomsons Model of the Atom. Early in the 20th...Ch. 22 - Thomsons Model of the Atom, Continued. Using...Ch. 22 - (a) How many excess electrons must be distributed...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - A Uniformly Charged Slab. A slab of insulating...Ch. 22 - CALC A Nonuniformly Charged Slab. Repeat Problem...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - (a) An insulating sphere with radius a has a...Ch. 22 - A very long, solid insulating cylinder has radius...Ch. 22 - DATA In one experiment the electric field is...Ch. 22 - DATA The electric field is measured for points at...Ch. 22 - DATA The volume charge density for a spherical...Ch. 22 - CP CALC A region in space contains a total...Ch. 22 - Suppose that to repel electrons in the radiation...Ch. 22 - What is the magnitude of E just outside the...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...
Additional Science Textbook Solutions
Find more solutions based on key concepts
You touch a defective appliance while standing on the ground, and you feel the tingle of a 2.5-mA current. What...
Essential University Physics (3rd Edition)
The maximum speed of wing tip of dragonfly.
College Physics: A Strategic Approach (3rd Edition)
The electric field on the surface of a 10-cm-diameter sphere is perpendicular to the sphere and has magnitude 4...
Essential University Physics: Volume 2 (3rd Edition)
8.54 A 1200-kg SUV is moving along a straight highway at 12.0 m/s. Another car, with mass 1800 kg and speed 20....
University Physics (14th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
The circuit at tight contains three identical bulbs and an ideal battery. Assume that the resistance of the swi...
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Is it possible for a conducting sphere of radius 0.10 m to hold a charge of 4.0 C in air? The minimum field required to break down air and turn it into a conductor is 3.0 106 N/C.arrow_forwardProblem 5: A thin rod of length L = 1.9 m lies along the positive y-axis with one end at the origin. The rod carries a uniformly distributed charge of Q1 = 5.2 µC. A point charge Q2 = 10.4 uC is located on the positive x-axis a distance a = 0.45 m from the origin. Refer to the figure. dy y X a Part (a) Consider a thin slice of the rod of thickness dy located a distance y away from the origin. What is the direction of the force on the point charge due to the charge on this thin slice? MultipleChoice : 1) Along the positive x-axis 2) Above the negative x-axis 3) Below the positive x-axis 4) Not enough information to determine 5) There is no force between the point charge and the slice of the rod 6) Above the positive x-axis 7) Below the negative x-axis Part (b) Choose the correct equation for x-component of the force, dFx, on the point charge due to the thin slice of the rod. SchematicChoice : kQ1Q2ady Q1Q2ady kQ,Q2ady dF dF, = L(a² + y²) dFx 3 3 L(a² + y²)ž L(a² + y²)ž kQ1Q2ydy kQ,Qzydy…arrow_forward(a) Figure (a) shows a nonconducting rod of length L = 8.00 cm and uniform linear charge density λ = +1.21 pc/m. Take V = 0 at infinity. What is V at point P at distance d = 7.40 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 1.21 pc/m. With V = 0 at infinity, what is V at P? 1/2 L/2- L/2 1/2 - (a) (b)arrow_forward
- (a) Figure (a) shows a nonconducting rod of length L = 9.00 cm and uniform linear charge density λ = +7.57 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 5.20 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 7.57 pC/m. With V = 0 at infinity, what is V at P? (a) Number i (b) Number i ·+· -L/2 (a) Units Units L/2 +‡ ‡ ‡+3= L/2 .Р (b) L/2arrow_forward(a) Figure (a) shows a nonconducting rod of length L-5.10 cm and uniform linear charge density = +8.35 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 7.60 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 8.35 pC/m. With V-0 at infinity, what is V at P? P L/2 L/2- (a) L/21/2 (b) (a) Number i Units (b) Number i Unitsarrow_forwardA charge of 170 µC is in the center of a cube with sides equal to 80.0 cm. There is no other charge near the cube. (a) Find the flow through each side of the cube. (b) The flow through the entire surface of the cube. (c) Explain what would happen to result b if the charge was not in the center of the bucket.arrow_forward
- A thin rod of length L = 1 m lies along the x axis with its left end at the origin. It has a uniform linear charge distribution 2 =-3.2 C/m. How many electrons are there on the rod contributing to the total charge?arrow_forwardLots of things that are electrically neutral overall have one side that's electrically negative and one side positive (a water molecule, for example). We call such things "electric dipoles," and we can model them as pairs of particles of charge + q and -g (where g is a positive number) separated by a distance d. Usually, d is a very small distance. (For water it would be around 10 11 m, thinking of a few protons worth of charge on one end - about 6 x 1019 C - and a few electrons worth at the other.) Furthermore, because of the magic of quantum mechanics, in many molecules it behaves more like a rigid rod than like a soft spring. So we can treat d as a fixed distance. Suppose you have a dipole that's free to move in any way (including rotate - imagine it floating in space). And there's an object with charge Qa distance r away. That distance r would be much larger than d, the distance between the charges of the dipole, so we draw the dipole small. a) Consider the forces between the…arrow_forwardPlease Asaparrow_forward
- A very long uniform line of charge has charge per unit length ₁ = 4.90 μC/m and lies along the x-axis. A second long uniform line of charge has charge per unit length X2 = -2.32 μC/m and is parallel to the x-axis at y₁ = 0.400 m. You may want to review (Page). For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Field of a uniform line charge.arrow_forwardAn infinitely long cylindrical conducting shell of outer radius r1 = 0.10 m and inner radius r2 = 0.08 m initially carries a surface charge density σ = -0.15 μC/m2. A thin wire, with linear charge density λ = 1.1 μC/m, is inserted along the shells' axis. The shell and the wire do not touch and there is no charge exchanged between them. A) What is the new surface charge density, in microcoulombs per square meter, on the inner surface of the cylindrical shell? B) What is the new surface charge density, in microcoulombs per square meter, on the outer surface of the cylindrical shell? C) Enter an expression for the magnitude of the electric field outside the cylinder (r > 0.1 m), in terms of λ, σ, r1, r, and ε0.arrow_forwardIn part (a) of the figure an electron is shot directly away from a uniformly charged plastic sheet, at speed vs = 3.60 x 105 m/s. The sheet is nonconducting, flat, and very large. Part (b) of the figure gives the electron's vertical velocity component v versus time t until the return to the launch point. What is the sheet's surface charge density? Assume ts = 28.0 ps. (a) v (105 m/s) t (ps) (b)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY