Concept explainers
Interpretation:
The base, codon, anticodon, and the amino acid needed to complete a given table are to be determined
Concept Introduction:
The first step of the synthesis of proteins using the information in DNA is transcription.
During transcription, the synthesis of messenger RNA (mRNA) from DNA takes place.
Only one DNA strand is needed for RNA synthesis, thus, the double helix of DNA unwinds during transcription. The strand used for the RNA synthesis is called the template strand. The other strand (the non-template strand) is called the informational strand and is not involved in the RNA synthesis. The informational strand of DNA is complementary to the template strand.
The informational strand of DNA is complementary to the template strand. This means that the base sequence of the informational strand consists of the complementary base sequence of the template strand.
Complementary base pairs:
Adenine pairs with thymine (A−T base pair).
Cytosine pairs with guanine (C−G base pair).
In addition, the two strands in the same DNA have different directions. Therefore, if the template strand goes from 3' to 5', the informational strand goes from 5' to 3'.
The mRNA synthesized from transcription has a complementary sequence to the DNA template from which it is prepared. Since the informational strand of DNA is complementary to the template strand, the mRNA is an exact copy of the informational strand. The only exception is that the base T present in the informational strand is replaced by U on the RNA strand.
The information needed to prepare a polypeptide is in the mRNA strand. Each sequence of three
The below table gives the corresponding amino acid of each codon. Based on the codon sequence of the mRNA strand, the amino acid sequence of the polypeptide strand can be determined with the help of the table.
Transfer RNA (tRNA) brings specific amino acids to add to the synthesizing peptide chain. Each individual tRNA contains an anticodon of three nucleotides that is complementary to the codon in mRNA.

Want to see the full answer?
Check out a sample textbook solution
Chapter 22 Solutions
ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
- Use diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward15) Create Lewis structure Br Brarrow_forward
- LIOT S How would you make 200. mL of a 0.5 M solution of CuSO4 5H2O from solid copper (II) sulfate? View Rubricarrow_forwardSteps and explantions pleasearrow_forwardMatch the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forward
- Can you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forward
- consider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forwardWhat are the missing reagents for the spots labeled 1 and 3? Please give a detailed explanation and include the drawings and show how the synthesis proceeds with the reagents.arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning




