
Concept explainers
(a)
Interpretation:
For the complex
- (a) Geometry of complex ion
- (b) Color absorption in whether red or blue
- (c) Whether high spin or low spin complex
Concept Introduction:
Complex compounds are primarily formed by
Complex compounds exist in following geometries - tetrahedral, square planar, octahedral etc.
Spectrochemical series refers to the arrangement of ligands with respect to crystal field splitting they cause in the d-orbitals of a metal ion. The ligand that causes larger splitting pattern is referred to as stronger ligand.
The ligands are arranged in increasing order of crystal field splitting they produce.
The ligand that causes larger crystal field splitting is strong ligand and the ligand that causes smaller splitting is termed as weak ligand.
Depending upon magnetic property Complexes are of two types - low spin complex and high spin complex. A complex is said to be low-spin if it doesn't have unpaired electrons whereas in high spin complex there will be presence of unpaired electrons. Stronger ligands pair the electrons and produce diamagnetic, low-spin complexes. Weaker ligands are incapable of pairing the electrons and form paramagnetic, high-spin complexes.
Almost all the Co-ordination compounds are colored compounds. Presence of unpaired electrons in a complex compound makes it colored as the unpaired electrons undergo transition from lower energy level to higher energy level. The color of the complex observed is complementary to the color absorbed in the wavelength region.
(a)

Answer to Problem 22.82QP
The complex ion is octahedral in geometry.
Explanation of Solution
The complex ion
(b)
Interpretation:
For the complex
- (a) Geometry of complex ion
- (b) Color absorption in whether red or blue
- (c) Whether high spin or low spin complex
Concept Introduction:
Complex compounds are primarily formed by transition elements which are d-block elements. A co-ordination compound is known as a complex compound is made of metal atom/ion and ligand(s). Ligands are considered as Lewis bases and the central metal atom is Lewis acid. Ligands donate a pair of electron to metal ion and establishes bonding with metal ion which is known as co-ordinate bond and hence these compounds are named as co-ordination compounds. The ligands represented inside the square brackets.
Complex compounds exist in following geometries - tetrahedral, square planar, octahedral etc.
Spectrochemical series refers to the arrangement of ligands with respect to crystal field splitting they cause in the d-orbitals of a metal ion. The ligand that causes larger splitting pattern is referred to as stronger ligand.
The ligands are arranged in increasing order of crystal field splitting they produce.
The ligand that causes larger crystal field splitting is strong ligand and the ligand that causes smaller splitting is termed as weak ligand.
Depending upon magnetic property Complexes are of two types - low spin complex and high spin complex. A complex is said to be low-spin if it doesn't have unpaired electrons whereas in high spin complex there will be presence of unpaired electrons. Stronger ligands pair the electrons and produce diamagnetic, low-spin complexes. Weaker ligands are incapable of pairing the electrons and form paramagnetic, high-spin complexes.
Almost all the Co-ordination compounds are colored compounds. Presence of unpaired electrons in a complex compound makes it colored as the unpaired electrons undergo transition from lower energy level to higher energy level. The color of the complex observed is complementary to the color absorbed in the wavelength region.
(b)

Answer to Problem 22.82QP
The complex will absorb in red region.
Explanation of Solution
The complex ion
(c)
Interpretation:
For the complex
- (a) Geometry of complex ion
- (b) Color absorption in whether red or blue
- (c) Whether high spin or low spin complex
Concept Introduction:
Complex compounds are primarily formed by transition elements which are d-block elements. A co-ordination compound is known as a complex compound is made of metal atom/ion and ligand(s). Ligands are considered as Lewis bases and the central metal atom is Lewis acid. Ligands donate a pair of electron to metal ion and establishes bonding with metal ion which is known as co-ordinate bond and hence these compounds are named as co-ordination compounds. The ligands represented inside the square brackets.
Complex compounds exist in following geometries - tetrahedral, square planar, octahedral etc.
Spectrochemical series refers to the arrangement of ligands with respect to crystal field splitting they cause in the d-orbitals of a metal ion. The ligand that causes larger splitting pattern is referred to as stronger ligand.
The ligands are arranged in increasing order of crystal field splitting they produce.
The ligand that causes larger crystal field splitting is strong ligand and the ligand that causes smaller splitting is termed as weak ligand.
Depending upon magnetic property Complexes are of two types - low spin complex and high spin complex. A complex is said to be low-spin if it doesn't have unpaired electrons whereas in high spin complex there will be presence of unpaired electrons. Stronger ligands pair the electrons and produce diamagnetic, low-spin complexes. Weaker ligands are incapable of pairing the electrons and form paramagnetic, high-spin complexes.
Almost all the Co-ordination compounds are colored compounds. Presence of unpaired electrons in a complex compound makes it colored as the unpaired electrons undergo transition from lower energy level to higher energy level. The color of the complex observed is complementary to the color absorbed in the wavelength region.
(c)

Answer to Problem 22.82QP
The complex is high spin complex.
Explanation of Solution
Referring to spectrochemical series fluoro ligand is a weak ligand. Hence, it forms high spin complex. Therefore
Want to see more full solutions like this?
Chapter 22 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry, 11th
- Biological Macromolecules Naming and drawing the products of aldose oxidation and reduction aw a Fischer projection of the molecule that would produce L-ribonic acid if it were subjected to mildly oxidizing reaction conditions. Click and drag to start drawing a structure. X AP ‡ 1/5 Naor Explanation Check McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Center Accessibilarrow_forward● Biological Macromolecules Identifying the parts of a disaccharide Take a look at this molecule, and then answer the questions in the table below it. CH2OH O H H H OH OH OH H H CH2OH H O OH H OH H H H H OH Is this a reducing sugar? Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. Explanation Check O yes X O no ○ yes O no Uarrow_forwardThe aim of the lab is to measure the sodium content from tomato sauce using the Mohr titration method. There are two groups being: Regular Tomato sauce & Salt Reduced tomato sauce QUESTION: State how you would prepare both Regular & Salt reduced tomato sauce samples for chemical analysis using the Mohr titration methodarrow_forward
- Using the conditions of spontaneity to deduce the signs of AH and AS Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions A The reverse of this reaction is always spontaneous but proceeds faster at temperatures above -48. °C. ΔΗ is (pick one) ✓ AS is (pick one) B This reaction is spontaneous except below 114. °C but proceeds at a slower rate below 135. °C. ΔΗ is (pick one) AS is (pick one) ΔΗ is C This reaction is exothermic and proceeds faster at temperatures above -43. °C. (pick one) AS is (pick one) v Х 5 ? 18 Ararrow_forwardion. A student proposes the following Lewis structure for the perchlorate (CIO) io : :0: : Cl : - - : :0: ك Assign a formal charge to each atom in the student's Lewis structure. atom central O formal charge ☐ top O ☐ right O ☐ bottom O ☐ Cl ☐arrow_forwardDecide whether these proposed Lewis structures are reasonable. proposed Lewis structure Yes. Is the proposed Lewis structure reasonable? Cl- : 2: :Z: :Z: N—N : 0: C C1: O CO No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* ☐ Yes. No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | Yes. No, it has the wrong number of valence electrons. The correct number is: No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | If two or more atoms of the same element don't satisfy the octet rule, just enter the chemical symbol as many times as necessary. For example, if two oxygen atoms don't satisfy the octet rule, enter "0,0". ☑arrow_forward
- Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions ΔΗ is (pick one) A This reaction is faster above 103. °C than below. AS is (pick one) ΔΗ is (pick one) B This reaction is spontaneous only above -9. °C. AS is (pick one) ΔΗ is (pick one) C The reverse of this reaction is always spontaneous. AS is (pick one) 18 Ararrow_forwardUse the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions A The reverse of this reaction is always spontaneous but proceeds slower at temperatures below 41. °C. ΔΗ is (pick one) AS is (pick one) ΔΗ is (pick one) B This reaction is spontaneous except above 94. °C. AS is (pick one) This reaction is always spontaneous, but ΔΗ is (pick one) C proceeds slower at temperatures below −14. °C. AS is (pick one) Х 00. 18 Ar 무ㅎ B 1 1arrow_forwardDraw the product of the reaction shown below. Ignore inorganic byproducts. + H CH3CH2OH HCI Drawingarrow_forward
- please explain this in simple termsarrow_forwardK Most Reactive Na (3 pts) Can the metal activity series (shown on the right) or a standard reduction potential table explain why potassium metal can be prepared from the reaction of molten KCI and Na metal but sodium metal is not prepared from the reaction of molten NaCl and K metal? Show how (not). Ca Mg Al с Zn Fe Sn Pb H Cu Ag Au Least Reactivearrow_forward(2 pts) Why is O2 more stable as a diatomic molecule than S2?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





