
An athlete whose mass is 70.0 kg drinks 16.0 ounces (454 g) of refrigerated water. The water is at a temperature of 35.0°F. (a) Ignoring the temperature change of the body that results from the water intake (so that the body is regarded as a reservoir always at 98.6°F), find the entropy increase of the entire system. (b) What If? Assume the entire body is cooled by the drink and the average specific heat of a person is equal to the specific heat of liquid water. Ignoring any other energy transfers by heat and any
(a)

The entropy rise of the entire system.
Answer to Problem 22.78AP
The entropy rise of the entire system is
Explanation of Solution
The mass of the athlete and the water is
Write the expression to calculate the change in entropy of the system.
Here,
Write the expression to calculate the change in entropy of water.
Here,
Write the expression to convert the temperature from Fahrenheit to Kelvin.
Substitute
Here,
Substitute
Here,
Substitute
Integrate the above expression from the limit of
Write the expression to calculate the change in entropy of water.
Substitute
Conclusion:
Substitute
Thus, the entropy rise of the entire system is
(b)

The athlete’s temperature after she drinks the cold water.
Answer to Problem 22.78AP
The final temperature of the body is
Explanation of Solution
Write the expression of heat balance equation.
Here,
Conclusion:
Substitute
Therefore, the final temperature of the body is
(c)

The entropy rise of the entire system.
Answer to Problem 22.78AP
The entropy rise of the entire system is
Explanation of Solution
The mass of the athlete and the water is
Write the expression to calculate the change in entropy of the system.
Write the expression to calculate the change in entropy of water.
Integrate the above expression from the limit of
Substitute
Write the expression to calculate the change in entropy of body.
Here,
Integrate the above expression from the limit of
Substitute
Conclusion:
Substitute
`
Thus, the entropy rise of the entire system is
(d)

The result by comparing the part (a) and (c).
Answer to Problem 22.78AP
The the change in entropy in part (c) is less than that of part (a) by a factor of
Explanation of Solution
Write the expression for the ratio of entropy in part (c) and (a)
Here,
Conclusion:
Thus the change in entropy in part (c) is less than that of part (a) by a factor of
Want to see more full solutions like this?
Chapter 22 Solutions
Physics for Scientists and Engineers
- Frictionless surfarrow_forward71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward
- 36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forwardPassage Problems Laptop computers are equipped with accelerometers that sense when the device is dropped and then put the hard drive into a protective mode. Your computer geek friend has written a program that reads the accel- erometer and calculates the laptop's apparent weight. You're amusing yourself with this program on a long plane flight. Your laptop weighs just 5 pounds, and for a long time that's what the program reports. But then the "Fasten Seatbelt" light comes on as the plane encounters turbu- lence. Figure 4.27 shows the readings for the laptop's apparent weight over a 12-second interval that includes the start of the turbulence. 76. At the first sign of turbulence, the plane's acceleration a. is upward. b. is downward. c. is impossible to tell from the graph. 77. The plane's vertical ac- celeration has its greatest magnitude a. during interval B. b. during interval C. c. during interval D. 78. During interval C, you can conclude for certain that the plane is Apparent…arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each otherarrow_forward
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other (so that you can use Coulomb's Law to calculate the electrical force).arrow_forwardUsing Coulomb's Law, calculate the magnitude of the electrical force between two protons located 1 meter apart from each other. (Give your answer as the number of Newtons but as usual you only need to include the number, not the unit label.)arrow_forwardPart A You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You estimate that a transmission wire is about 12 m above the ground. The local power company tells you that the line operates at 12 kV and provide a maximum of 60 MW to the local area. Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.] Express your answer using two significant figures. ΟΤΕ ΑΣΦ VAΣ Bmax= Submit Request Answer Part B Compare to the Earth's field of 5.0 x 10-5 T. Express your answer using two significant figures. Ο ΑΣΦ B BEarth ? ? Tarrow_forward
- Ho propel 9-kN t. Boat 27. An elevator accelerates downward at 2.4 m/s². What force does the elevator's floor exert on a 52-kg passenger?arrow_forward16. 17 A CUIN Starting from rest and undergoing constant acceleration, a 940-kg racing car covers 400 m in 4.95 s. Find the force on the car.arrow_forward----- vertical diste Section 4.6 Newton's Third Law 31. What upward gravitational force does a 5600-kg elephant exert on Earth?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





