A biology laboratory is maintained at a constant temperature of 7.00ºC by an air conditioner, which is vented to the air outside. On a typical hot summer day, the outside temperature is 27.0ºC and the air-conditioning unit emits energy to the outside at a rate of 10.0 kW. Model the unit as having a coefficient of performance (COP) equal to 40.0% of the COP of an ideal Carnot device. (a) At what rate does the air conditioner remove energy from the laboratory? (b) Calculate the power required for the work input. (c) Find the change in entropy of the Universe produced by the air conditioner in 1.00 h. (d) What If? The outside temperature increases to 32.0ºC. Find the fractional change in the COP of the air conditioner.
(a)
The rate of removal of energy by the air conditioner.
Answer to Problem 22.70AP
The rate of removal of energy by the air conditioner is
Explanation of Solution
Given info: The temperature of laboratory is
The formula for Carnot efficiency of cooling is,
Here,
Substitute
Solve the above expression for
The coefficient of performance at
Substitute
The rate of emission of energy outside is the sum of rate of removal of energy and input work required to do so.
Rearrange the above expression for
The formula to coefficient of performance is,
Here,
Substitute
Solve the above expression for
Substitute
Substitute
Conclusion:
Therefore, the rate of removal of energy by the air conditioner is
(b)
The power required for the input work.
Answer to Problem 22.70AP
The power required for the input work is
Explanation of Solution
Given info: The temperature of laboratory is
As calculated in equation (2) of the above part,
So the work input is
Conclusion:
Therefore, the work input required for the input work is
(c)
The entropy change of universe produced by air conditioner in
Answer to Problem 22.70AP
The entropy change of universe produced by the air conditioner in
Explanation of Solution
Given info: The temperature of laboratory is
The formula to calculate change in entropy is,
Substitute
Solve the above expression for
Conclusion:
Therefore, the entropy change of universe produced by the air conditioner in
(d)
The fractional change in
Answer to Problem 22.70AP
The fractional change in
Explanation of Solution
Given info: The temperature of laboratory is
The formula to calculate
Here,
Substitute
The formula for the percentage is,
Here,
Substitute
Conclusion:
Therefore, the fractional change in
Want to see more full solutions like this?
Chapter 22 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- What is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning