Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 22, Problem 22.4QAP
For each of the following half-cells, compare electrode potentials calculated from (I) concentration and (2) activity data.
(a) Sn(ClO4)2(3.00 × 10-5 M),Sn(ClO4)4(6.00 × 10-5M)|Pt
(b) Sn(ClO4)2(3.00 × 10-5 M),Sn(ClO4)4(6.00 × 10-5M),NaCIO4(0.0800 M)|Pt
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 22 Solutions
Principles of Instrumental Analysis
Ch. 22 - Calculate the electrode potentials of the...Ch. 22 - Prob. 22.2QAPCh. 22 - For each of the following half-cells, compare...Ch. 22 - For each of the following half-cells, compare...Ch. 22 - Prob. 22.5QAPCh. 22 - Calculate the electrode potentials for the...Ch. 22 - Calculate the theoretical potential of each of the...Ch. 22 - Calculate the theoretical potential of each of the...Ch. 22 - Prob. 22.9QAPCh. 22 - Prob. 22.10QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calculate the standard cell potential of the following cell at 25C. Sn(s)Sn2+(aq)I2(aq)I(aq)arrow_forwardIt took 150. s for a current of 1.25 A to plate out 0.109 g of a metal from a solution containing its cations. Show that it is not possible for the cations to have a charge of 1+.arrow_forwardAt 298 K, the solubility product constant for Pb(IO3)2 is 2.6 1013, and the standard reduction potential of the Pb2+(aq) to Pb(s) is 0.126 V. (a) Find the standard potential of the half-reaction Pb(IO3)2(s)+2ePb(s)+2IO3(aq) (Hint: The desired half-reaction is the sum of the equations for the solubility product and the reduction of Pb2+. Find G for these two reactions, and add them to find G for their sum. Convert the G to the potential of the desired half-reaction.) (b) Calculate the potential of the Pb/Pb(IO3)2 electrode in a 3.5 103 M solution of NaIO3.arrow_forward
- For each reaction listed, determine its standard cell potential at 25 C and whether the reaction is spontaneous at standard conditions. (a) Mn(s)+Ni2+(aq)Mn2+(aq)+Ni(s) (b) 3Cu2+(aq)+2Al(s)2Al3+(aq)+3Cu(s) (c) Na(s)+LiNO3(aq)NaNO3(aq)+Li(s) (d) Ca(NO3)2(aq)+Ba(s)Ba(NO3)2(aq)+Ca(s)arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forwardAt 298 K, the solubility product constant for PbC2O4 is 8.5 1010, and the standard reduction potential of the Pb2+(aq) to Pb(s) is 0.126 V. (a) Find the standard potential of the half-reaction PbC2O4(s)+2ePb(s)+C2O42(aq) (Hint: The desired half-reaction is the sum of the equations for the solubility product and the reduction of Pb2+. Find G for these two reactions and add them to find G for their sum. Convert the G to the potential of the desired half-reaction.) (b) Calculate the potential of the Pb/PbC2O4 electrode in a 0.025 M solution of Na2C2O4.arrow_forward
- For each of the reactions, calculate E from the table of standard potentials, and state whether the reaction is spontaneous as written or spontaneous in the reverse direction under standard conditions. (a) Cu2+(aq)+Ni(s)Cu(s)+Ni2+(aq) (b) 2Ag(s)+Cl2(g)2AgCl(s) (c) Cl2(g)+2I(aq)2Cl(aq)+I2(s)arrow_forwardWhich of the changes below will increase the voltage of the following cell? Co|Co2+(0.010M)H+(0.010M)|H2(0.500atm)|Pt (a) Increase the volume of COCl2 solution from 100 mL to 300 mL. (b) Increase [H+] from 0.010 M to 0.500 M. (c) Increase the pressure of H2 from 0.500 atm to 1 atm. (d) Increase the mass of the Co electrode from 15 g to 25 g. (e) Increase [CO2+] from 0.010 M to 0.500 M.arrow_forwardA half-cell that consists of a copper wire in a 1.00 M Cu(NO3)2 solution is connected by a salt bridge to a solution that is 1.00 M in both Pu3+ and Pu4+, and contains an inert metal electrode. The voltage of the cell is 0.642 V, with the copper as the negative electrode. (a) Write the half-reactions and the overall equation for the spontaneous chemical reaction. (b) Use the standard potential of the copper half-reaction, with the voltage of the cell, to calculate the standard reduction potential for the plutonium half-reaction.arrow_forward
- The half-cells Ag+(aq. 1.0 M)|Ag(s) and H+(aq, ? M)|H2(1.0 bar) are linked by a salt bridge to create a voltaic cell. With the silver electrode as the cathode, a value of 0.902 V is recorded tor kcell at 298 K. Determine the concentration of H+ and the pH of the solution.arrow_forwardFor a certain cell, G=25.0 kJ. Calculate E° if n is (a) 1(b)1(c) 41 Comment on the effect that the number of electrons exchanged has on the voltage of a cell.arrow_forwardConsider a voltaic cell in which the following reaction occurs. Zn(s)+Sn2+(aq)Zn2+(aq)+Sn(s) (a) Calculate E° for the cell. (b) When the cell operates, what happens to the concentration of Zn2+? The concentration of Sn2+? (c) When the cell voltage drops to zero, what is the ratio of the concentration of Zn2+ to that of Sn2+? (d) If the concentration of both cations is 1.0 M originally, what are the concentrations when the voltage drops to zero?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY