College Physics
1st Edition
ISBN: 9781938168048
Author: Paul Peter Urone, OpenStax, Roger Hinrichs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 17CQ
Why would a magnetohydrodynamic drive work better in ocean water than in fresh water? Also, why would superconducting magnets be desirable?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Consider a single square loop of wire of area A carrying a current I in a uniform magnetic field
of strength B. The field is pointing directly up the page in the plane of the page. The loop is
oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the
normal vector for the loop is always in the plane of the page!). In the illustrations below the
magnetic field is shown in red and the current through the current loop is shown in blue. The
loop starts out in orientation (i) and rotates clockwise, through
orientations (ii) through (viii)
before returning to (i).
(i)
Ø I N - - I N -
(iii)
(iv)
(v)
(vii)
(viii)
a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector
μ of the current loop and indicate whether the torque on the dipole due to the magnetic field
is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the
loop experience the maximum magnitude of torque?
[Hint: Use the…
Please help with calculating the impusle, thanks!
Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse:
1.Measure the weight of the balls and determine their mass.
Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg
The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Second
5. Three blocks, each with mass m, are connected by strings and are pulled to the right along the surface
of a frictionless table with a constant force of magnitude F. The tensions in the strings connecting the
masses are T1 and T2 as shown.
m
T1
T2
F
m
m
How does the magnitude of tension T₁ compare to F?
A) T₁ = F
B) T₁ = (1/2)F
C) T₁ = (1/3)F
D) T₁ = 2F
E) T₁ = 3F
Chapter 22 Solutions
College Physics
Ch. 22 - Volcanic and other such activity at the...Ch. 22 - Explain why the magnetic field would not be unique...Ch. 22 - List the ways in which magnetic field lines and...Ch. 22 - Noting that the magnetic field lines of a bar...Ch. 22 - Is the Earth's magnetic field parallel to the...Ch. 22 - If a charged particle moves in a straight line...Ch. 22 - How can the motion of a charged particle be used...Ch. 22 - High-velocity charged particles can damage...Ch. 22 - If a cosmic ray proton approaches the Earth from...Ch. 22 - What are the signs of the charges on the particles...
Ch. 22 - Which of the particles in Figure 22.47 has the...Ch. 22 - Which of the particles in Figure 22.47 has the...Ch. 22 - While operating, a high-precision TV monitor is...Ch. 22 - Discuss how the Hall effect could be used to...Ch. 22 - Draw a sketch of the situation in Figure 22.30...Ch. 22 - Verify than the direction of the line force in an...Ch. 22 - Why would a magnetohydrodynamic drive work better...Ch. 22 - Which is more likely to interfere with compass...Ch. 22 - Draw a diagram and use RHR-l to show that the...Ch. 22 - Make a drawing and use RHR—2 to find the direction...Ch. 22 - Is the force attractive or repulsive between the...Ch. 22 - It you have three parallel wires in the same...Ch. 22 - Suppose two long straight wires run perpendicular...Ch. 22 - Use the right hand rules to show that the force...Ch. 22 - If one of the loops in Figure 22.49 is titled...Ch. 22 - Electric field lines can be shielded by me Faraday...Ch. 22 - Measurements at the weak and ?uctuating magnetic...Ch. 22 - Discuss the possibility that a Hall voltage would...Ch. 22 - A patient in an MRI unit turns his head quickly to...Ch. 22 - You are told that in a certain region there is...Ch. 22 - An example of magnetohydrodynamics (MHD) comes...Ch. 22 - Draw gravitational field lines between 2 masses,...Ch. 22 - What is the direction of the magnetic force on a...Ch. 22 - Repeal Exercise 22.1 for a negative charge.Ch. 22 - What is the direction of the velocity of a...Ch. 22 - Repeal Exercise 22.3 for a positive charge.Ch. 22 - What is the direction of the magnetic field that...Ch. 22 - Repeal Exercise 22.5 for a negative charge.Ch. 22 - What is the maximum force on an aluminum rod with...Ch. 22 - (a) Aircraft sometimes acquire small static...Ch. 22 - (a) A cosmic ray proton moving toward the Earth at...Ch. 22 - An electron moving at 4.00103m/s in a 1.25T...Ch. 22 - (a) A physicist performing a sensitive measurement...Ch. 22 - A cosmic ray electron moves at 7.50106m/s...Ch. 22 - A proton moves at 7.50107m/s perpendicular to a...Ch. 22 - (a) Viewers of Star Trek hear of an antimatter...Ch. 22 - (a) An oxygen16 ion with a mass at 2.661026kg...Ch. 22 - What radius circular path does an electron travel...Ch. 22 - A velocity selector in a mass spectrometer uses a...Ch. 22 - An electron in a TV CRT moves with a speed at...Ch. 22 - (a) At what speed will a proton move in a circular...Ch. 22 - A mass spectrometer is being used to separate...Ch. 22 - (a) Triply charged uranium-235 and uranium-238...Ch. 22 - A large water main is 2.50 m in diameter and the...Ch. 22 - What Hall voltage is produced by a 0.200T field...Ch. 22 - (a) What is the speed of a supersonic aircraft...Ch. 22 - A nonmechanical water meter could utilize the Hall...Ch. 22 - Calculate the Hall voltage induced on a patient’s...Ch. 22 - A Hall probe calibrated to read 1.00V when placed...Ch. 22 - Using information in Example 20.6, what would the...Ch. 22 - Show that the Hall voltage across wires made of...Ch. 22 - A patient with a pacemaker is mistakenly being...Ch. 22 - What is the direction of the magnetic force on the...Ch. 22 - What is the direction of a current that...Ch. 22 - What is the direction of the magnetic field that...Ch. 22 - (a) What is the force per meter on a lightning...Ch. 22 - (a) A DC power line for a light-rail system...Ch. 22 - What force is exerted on the water in an MHD drive...Ch. 22 - A wire carrying a 30.0-A current passes between...Ch. 22 - (a) A 0.750-m-long section of cable carrying...Ch. 22 - (a) What is the angle between a wire carrying an...Ch. 22 - The force on the rectangular loop of wire in the...Ch. 22 - (a) By how many percent is the torque of a motor...Ch. 22 - (a) What is me maximum torque on a 150Turn square...Ch. 22 - Find the current through a loop needed to create a...Ch. 22 - Calculate the magnetic field strength needed on a...Ch. 22 - Since the equation for torque on a...Ch. 22 - (a) At what angle (is the torque on a current loop...Ch. 22 - A proton has a magnetic field due to its spin on...Ch. 22 - (a) A 200Turn circular loop of radius 50.0 cm is...Ch. 22 - Repeat Exercise 22.41, but with the loop lying...Ch. 22 - (a) The hot and neutral wires supplying DC power...Ch. 22 - The force per meter between the two wires of a...Ch. 22 - A 2.50m segment of wire supplying current to the...Ch. 22 - The wire carrying 400 A to The motor of a commuter...Ch. 22 - An AC appliance cord has its hot and neutral wires...Ch. 22 - Figure 22.57 shows a long straight wire near a...Ch. 22 - Find the direction and magnitude of the force that...Ch. 22 - Find the direction and magnitude of the force that...Ch. 22 - Indicate whether the magnetic field created in...Ch. 22 - What are the directions of the fields in the...Ch. 22 - What are the directions of the currents in the...Ch. 22 - To see why an MRI utilizes iron to increase the...Ch. 22 - Inside a motor, 30.0 A passes through a 250-turn...Ch. 22 - Nonnuclear submarines use batteries for power when...Ch. 22 - How strong is the magnetic field inside a solenoid...Ch. 22 - What current is needed in the solenoid described...Ch. 22 - How far from the starter cable of a car, carrying...Ch. 22 - Measurements affect the system being measured,...Ch. 22 - Figure 22.62 shows a long straight wire just...Ch. 22 - Find the magnitude and direction of the magnetic...Ch. 22 - Find the magnitude and direction of the magnetic...Ch. 22 - What current is needed in the top wire in Figure...Ch. 22 - Calculate the size of the magnetic field 20 m...Ch. 22 - Integrated Concepts A pendulum is set up so that...Ch. 22 - Integrated Concepts (a) What voltage will...Ch. 22 - Integrated Concepts Find the radius of curvature...Ch. 22 - Integrated Concepts To construct a nonmechanical...Ch. 22 - Integrated Concepts (a) Using the values given for...Ch. 22 - Integrated Concepts (a) Calculate the maximum...Ch. 22 - Integrated Concepts A current balance used to...Ch. 22 - Integrated Concepts (a) Show that the period of...Ch. 22 - Integrated Concepts A cyclotron accelerates...Ch. 22 - Integrated Concepts (a) A 0.140-kg baseball,...Ch. 22 - Integrated Concepts (a) What is the direction of...Ch. 22 - Integrated Concepts One long straight wire is to...Ch. 22 - Unreasonable Results (a) Find the charge on a...Ch. 22 - Unreasonable Results A charged particle having...Ch. 22 - Unreasonable Results An inventor wants to generate...Ch. 22 - Unreasonable Results Frustrated by the small Hall...Ch. 22 - Unreasonable Results A surveyor 100 m from a long...Ch. 22 - Construct Your Own Problem Consider a mass...Ch. 22 - Construct Your Own Problem Consider using the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5. A 65 kg gymnast wedges himself between two closely spaced vertical walls by pressing his hands and feet ag...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. Write a single sentence, using no more than 25 words, to summarize each of the following cellular processes...
Human Anatomy & Physiology (2nd Edition)
Using the forked-line, or branch diagram, method, determine the genotypic and phenotypic ratios of these trihyb...
Concepts of Genetics (12th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
17.1 Reciprocal crosses of experimental animals or plants sometimes give different results in the. What are two...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Using Coulombs Law, what is the magnitude of the electrical force between two protons located 1 meter apart from each other in Newtons?arrow_forwardCalculate the magnitude of the gravitational force between 2 protons located 1 meter apart from each other in Newtons using Newton's Law of Universal Gravitation.arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere if there is a distance 25 cm from the person to the sphere using Coulomb's Law to calculate the electrical force. Give your answer as the number of Coulombs (with no unit label, as usual).arrow_forward
- A balloon is rubbed on a sweater, giving the balloon a negative charge by adding an extra 3.9 x 107 electrons compared to its neutral state. What is the magnitude of the net charge on the balloon, in Coulombs?arrow_forwardA ping pong ball and a tennis ball are dropped and there is a very small gap between them when the tennis ball hits the floor. Indicate the directions of the momentums of the ping pong ball and the tennis ball after the tennis ball collides with the floor, but before the balls collide with each other. (Drawing a diagram may be helpful.)arrow_forwardDescribe how the momentum of a single ball changes as it free falls from a height of approximately 1 m, collides with a hard floor, and rebounds.arrow_forward
- If the answer is 2.8, -2.8 or -8.4, it is not CORRECTarrow_forwardThree blocks, light connecting ropes, and a light frictionless pulley comprise a system, as shown in the figure. An external force of magnitude P is applied downward on block A, causing block A to accelerate downward at a constant 2.5 m/s2. The tension in the rope connecting block B and block C is equal to 60 N. (a) What is the magnitude of the force P? (b) What is the mass of block C?arrow_forwardCurrent Attempt in Progress In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm? d Number MI Units +qarrow_forward
- Current Attempt in Progress In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm? d Number MI Units +qarrow_forwardA 0.500 kg sphere moving with a velocity given by (2.00î – 2.60ĵ + 1.00k) m/s strikes another sphere of mass 1.50 kg moving with an initial velocity of (−1.00î + 2.00ĵ – 3.20k) m/s. (a) The velocity of the 0.500 kg sphere after the collision is (-0.90î + 3.00ĵ − 8.00k) m/s. Find the final velocity of the 1.50 kg sphere. R = m/s Identify the kind of collision (elastic, inelastic, or perfectly inelastic). ○ elastic O inelastic O perfectly inelastic (b) Now assume the velocity of the 0.500 kg sphere after the collision is (-0.250 + 0.850ĵ - 2.15k) m/s. Find the final velocity of the 1.50 kg sphere. ✓ = m/s Identify the kind of collision. O elastic O inelastic O perfectly inelastic (c) Take the velocity of the 0.500 kg sphere after the collision as (−1.00ỉ + 3.40] + ak) m/s. Find the value of a and the velocity of the 1.50 kg sphere after an elastic collision. (Two values of a are possible, a positive value and a negative value. Report each with their corresponding final velocities.) a…arrow_forwardA cannon is rigidly attached to a carriage, which can move along horizontal rails, but is connected to a post by a large spring, initially unstretched and with force constant k = 1.31 x 104 N/m, as in the figure below. The cannon fires a 200-kg projectile at a velocity of 136 m/s directed 45.0° above the horizontal. 45.0° (a) If the mass of the cannon and its carriage is 5000 kg, find the recoil speed of the cannon. m/s (b) Determine the maximum extension of the spring. m (c) Find the maximum force the spring exerts on the carriage. (Enter the magnitude of the force.) Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY