Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
4th Edition
ISBN: 9780133942651
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 22, Problem 15CQ
The electric force on a charged particle in an electric field is F.
What will be the force if the particle's charge is tripled and the
electric field strength is halved?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron flies into a constant electric field (along the direction of the lines of E-field). The initial electron velocity is 10 km/s. Calculate the magnitude the electric field if the electron stops in 6 nsec. The electron mass is me =9.11×10-31 kg, the electron charge is qe = -1.61×10-19 C.
The electric field, E = Units .
Three charges form a right triangle. A -3 uC charge is 4 cm above a +6 uC charge. A +1.5 uC charge is 3 cm to the right of the +6 uC charge. what is the magnitude and direction of the resultant force on the +6 uC charge?
Honeybees acquire a charge while flying due to friction with the air. A 130 mg bee with a charge of + 23 pC experiences an electric force in the earth's electric field, which is typically 100 N/C, directed downward.
What is the ratio of the electric force on the bee to the bee's weight?
What electric field strength would allow the bee to hang suspended in the air?
Chapter 22 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Ch. 22 - l. Can an insulator be charged? If so, how would...Ch. 22 - Can a conductor be charged? If so, how would you...Ch. 22 - Four lightweight balls A, B, C, and D are...Ch. 22 - Charged plastic and glass rods hang by threads. a....Ch. 22 - A lightweight metal ball hangs by a thread. When a...Ch. 22 - Prob. 6CQCh. 22 - Prob. 7CQCh. 22 - The two oppositely charged metal spheres in FIGURE...Ch. 22 - Metal sphere A in FIGURE Q22.9 has 4 units of...Ch. 22 - Prob. 10CQ
Ch. 22 - Prob. 11CQCh. 22 - Prob. 12CQCh. 22 - Reproduce FIGURE Q22.13 on your paper. Then draw a...Ch. 22 - Prob. 14CQCh. 22 - The electric force on a charged particle in an...Ch. 22 - A glass rod is charged to +8.0 nC by rubbing. a....Ch. 22 - Prob. 2EAPCh. 22 - 3. A plastic rod that has been charged to —15 nC...Ch. 22 - A glass rod that has been charged to + 12 nC...Ch. 22 - Prob. 5EAPCh. 22 - Prob. 6EAPCh. 22 - Prob. 7EAPCh. 22 - A linear accelerator uses alternating electric...Ch. 22 - Prob. 9EAPCh. 22 - Two neutral metal spheres on wood stands are...Ch. 22 - Prob. 11EAPCh. 22 - You have two neutral metal spheres on wood stands....Ch. 22 -
13. Two 1.0 kg masses are 1.0 m apart (center...Ch. 22 - Two small plastic spheres each have a mass of 2.0...Ch. 22 - Prob. 15EAPCh. 22 - Two protons are 2.0 fm apart. What is the...Ch. 22 - What is the net electric force on charge A in...Ch. 22 - What is the net electric force on charge B in...Ch. 22 - What is the force F on the 1.0 nC charge in FIGURE...Ch. 22 - What is the force on the 1.0nC charge in figure...Ch. 22 - Object A, which has been charged to +4.0 nC, is at...Ch. 22 - A small plastic bead has been charged to —15 nC....Ch. 22 - A 2.0 g plastic bead charged to —4.0 nC and a 4.0...Ch. 22 - Two positive point charges q and 4q are at x = O...Ch. 22 - A massless spring is attached to a support at one...Ch. 22 - What are the strength and direction of the...Ch. 22 - The electric field at a point in space is E =...Ch. 22 - Prob. 28EAPCh. 22 - What magnitude charge creates a 1.0 N/C electric...Ch. 22 - Prob. 30EAPCh. 22 - Prob. 31EAPCh. 22 - A + 12 nC charge is located at the origin. a. What...Ch. 22 - A —12 nC charge is located at (x, y) = (1.0 cm, 0...Ch. 22 - A 0.10 g honeybee acquires a charge of +23 pC...Ch. 22 - Prob. 35EAPCh. 22 - 36. Two 1.0 g spheres are charged equally and...Ch. 22 - 37. The nucleus of a 125Xe atom (an isotope of...Ch. 22 - Prob. 38EAPCh. 22 - Prob. 39EAPCh. 22 - Objects A and B are both positively charged. Both...Ch. 22 - What is the force F on the —10 nC charge in FIGURE...Ch. 22 - What is the force F on the —10nC charge in FIGURE...Ch. 22 - 43. What is the force on the 5.0 nC charge in...Ch. 22 - Prob. 44EAPCh. 22 - What is the force F on the 1.0 nC charge at the...Ch. 22 - What is the force F on the 1.0 nC charge at the...Ch. 22 - Prob. 47EAPCh. 22 - The net force on the 1.0 nC charge in FIGURE...Ch. 22 - Prob. 49EAPCh. 22 - A positive point charge Q is located at x=a and a...Ch. 22 - Prob. 51EAPCh. 22 - FIGURE P22.52 shows three charges and the net...Ch. 22 - Prob. 53EAPCh. 22 - Prob. 54EAPCh. 22 - You have two small, 2.0 g balls that have been...Ch. 22 - A 2.0 g metal cube and a 4.0 g metal cube are 6.0...Ch. 22 - Prob. 57EAPCh. 22 - Prob. 58EAPCh. 22 - Prob. 59EAPCh. 22 - Prob. 60EAPCh. 22 - Prob. 61EAPCh. 22 - Two 5.0 g point charges on 1.0-m-long threads...Ch. 22 - Prob. 63EAPCh. 22 - Prob. 64EAPCh. 22 - 65. A 10.0 nC charge is located at position (1.0...Ch. 22 - Prob. 66EAPCh. 22 - An electric field E = 100,000i N/C causes the 5.0...Ch. 22 - An electric field E = 200,000i N/C causes the...Ch. 22 - Prob. 69EAPCh. 22 - In Problems 69 through 72 you are given the...Ch. 22 - Prob. 71EAPCh. 22 - Prob. 72EAPCh. 22 - Prob. 73EAPCh. 22 - Three 3.0 g balls are tied to 80-cm-long threads...Ch. 22 - 75. IN ne identical small spheres shown in FIGURE...Ch. 22 - 76. The force on the -1.0 nC charge is as shown in...Ch. 22 - 77. In Section 22.3 we claimed that a charged...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Find the magnitude and direction of the electric field at the position of the 2.00 C charge in Figure P13.13. (b) How would the electric field at that point be affected if the charge there were doubled? Would the magnitude of the electric force be affected?arrow_forwardThe electric field at a point on the perpendicular bisector of a charged rod was calculated as the first example of a continuous charge distribution, resulting in Equation 24.15:E=kQy12+y2j a. Find an expression for the electric field when the rod is infinitely long. b. An infinitely long rod with uniform linear charge density also contains an infinite amount of charge. Explain why this still produces an electric field near the rod that is finite.arrow_forwardThree charged particles are located at the corners of an equilateral triangle as shown in Figure P19.9. Calculate the total electric force on the 7.00-C charge.arrow_forward
- A sphere has a net charge of 8.05 nC, and a negatively charged rod has a charge of 6.03 nC. The sphere and rod undergo a process such that 5.00 109 electrons are transferred from the rod to the sphere. What are the charges of the sphere and the rod after this process?arrow_forwardTwo point charges attract each other with an electric force of magnitude F. If the charge on one of the particles is reduced to one-third its original value and the distance between the particles is doubled, what is the resulting magnitude of the electric force between them? (a) 112F (b) 13F (c) 16F (d) 34F (e) 32Farrow_forwardAssume the charged objects in Figure OQ23.10 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 an charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1.arrow_forward
- (a) What is the direction of the total Coulomb force on q in Figure 18.46 if q is negative, qa= qcand both are negative, and qb= qcand both are positive? (b) What is the direction of the electric field at the center of the square in this situation?arrow_forwardFigure 24.10 shows a source that consists of two charged particles. a. What is the sign of the charge on each particle? b. In which region (A, B, or C) is the electric field the weakest? c. In which region (A, B, or C) is the electric field the strongest? FIGURE 24.10arrow_forwardThe fundamental charge is e = 1.60 1019 C. Identify whether each of the following statements is true or false. (a) Its possible to transfer electric charge to an object so that its net electric charge is 7.5 times the fundamental electric charge, e. (b) All protons have a charge of +e. (c) Electrons in a conductor have a charge of e while electrons in an insulator have no charge.arrow_forward
- An object has a charge of 35 nC. How many excess protons does it have?arrow_forward(a) Determine the electric field strength at a point 1.00 cm to the left of the middle charge shown in Figure P15.10. (b) If a charge of 2.00 C is placed at this point, what are the magnitude and direction of the force on it?arrow_forwardAssume the charged objects in Figure OQ19.15 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 on charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1. Figure OQ19.15arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY