
Concept explainers
Particle A of charge 3.00 × 10−4 C is at the origin, particle B of charge −6.00 × 10−4 C is at (4.00 m, 0), and particle C of charge 1.00 × 10−4 C is at (0, 3.00 m). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C? (b) What is the y component of the force exerted by A on C? (c) Find the magnitude of the force exerted by B on C. (d) Calculate the x component of the force exerted by B on C. (e) Calculate the y component of the force exerted by B on C. (f) Sum the two x components from parts (a) and (d) to obtain the resultant x component of the electric force acting on C. (g) Similarly, find the y component of the resultant force vector acting on C. (h) Find the magnitude and direction of the resultant electric force acting on C.
(a)

The
Answer to Problem 12P
The
Explanation of Solution
The charge of particle
The diagram for the given condition is shown below.
Figure 1
Write the formula to calculate the electrical force
Here,
The particle
The distance from the
Thus, the
Conclusion:
Therefore, the
(b)

The
Answer to Problem 12P
The
Explanation of Solution
Write the formula to calculate the electrical force
Substitute
Conclusion:
Therefore, the
(c)

The magnitude of the force exerted by
Answer to Problem 12P
The magnitude of the force exerted by
Explanation of Solution
By Pythagoras theorem, write the expression distance between
Write the formula to calculate the electrical force
Here,
Substitute
Conclusion:
Therefore, the magnitude of the force exerted by
(d)

The
Answer to Problem 12P
The
Explanation of Solution
From part (c), the magnitude of the force exerted by
Resolve the side
From Figure I
Here,
Write the formula to calculate the
Here,
Substitute
Conclusion:
Therefore, the
(e)

The
Answer to Problem 12P
The
Explanation of Solution
From part (c), the magnitude of the force exerted by
Resolve the side
From Figure I,
Write the formula to calculate the
Here,
Substitute
Conclusion:
Therefore, the
(f)

The resultant
Answer to Problem 12P
The resultant
Explanation of Solution
From part (a), the
From part (d), the
Write the formula to calculate the resultant force acting on the particle
Here,
Substitute
Conclusion:
Therefore, the resultant
(g)

The resultant
Answer to Problem 12P
The resultant
Explanation of Solution
From part (b), the
From part (e), the
Write the formula to calculate the resultant force acting on the particle
Here,
Substitute
Conclusion:
Therefore, the resultant
(h)

The magnitude and direction of the resultant electric force acting on
Answer to Problem 12P
The magnitude and direction of the resultant electric force acting on
Explanation of Solution
From part (g), the resultant
From part (f), the resultant
Write the formula to calculate the resultant force acting on the particle
Here,
Substitute
Write the formula to calculate the direction of the resultant force acting on
Here,
Substitute
The direction of the resultant force is counterclockwise from
Conclusion:
Therefore, the magnitude and direction of the resultant electric force acting on
Want to see more full solutions like this?
Chapter 22 Solutions
Physics for Scientists and Engineers, Volume 2
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





