Concept explainers
Particle A of charge 3.00 × 10−4 C is at the origin, particle B of charge −6.00 × 10−4 C is at (4.00 m, 0), and particle C of charge 1.00 × 10−4 C is at (0, 3.00 m). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C? (b) What is the y component of the force exerted by A on C? (c) Find the magnitude of the force exerted by B on C. (d) Calculate the x component of the force exerted by B on C. (e) Calculate the y component of the force exerted by B on C. (f) Sum the two x components from parts (a) and (d) to obtain the resultant x component of the electric force acting on C. (g) Similarly, find the y component of the resultant force vector acting on C. (h) Find the magnitude and direction of the resultant electric force acting on C.
(a)
The
Answer to Problem 12P
The
Explanation of Solution
The charge of particle
The diagram for the given condition is shown below.
Figure 1
Write the formula to calculate the electrical force
Here,
The particle
The distance from the
Thus, the
Conclusion:
Therefore, the
(b)
The
Answer to Problem 12P
The
Explanation of Solution
Write the formula to calculate the electrical force
Substitute
Conclusion:
Therefore, the
(c)
The magnitude of the force exerted by
Answer to Problem 12P
The magnitude of the force exerted by
Explanation of Solution
By Pythagoras theorem, write the expression distance between
Write the formula to calculate the electrical force
Here,
Substitute
Conclusion:
Therefore, the magnitude of the force exerted by
(d)
The
Answer to Problem 12P
The
Explanation of Solution
From part (c), the magnitude of the force exerted by
Resolve the side
From Figure I
Here,
Write the formula to calculate the
Here,
Substitute
Conclusion:
Therefore, the
(e)
The
Answer to Problem 12P
The
Explanation of Solution
From part (c), the magnitude of the force exerted by
Resolve the side
From Figure I,
Write the formula to calculate the
Here,
Substitute
Conclusion:
Therefore, the
(f)
The resultant
Answer to Problem 12P
The resultant
Explanation of Solution
From part (a), the
From part (d), the
Write the formula to calculate the resultant force acting on the particle
Here,
Substitute
Conclusion:
Therefore, the resultant
(g)
The resultant
Answer to Problem 12P
The resultant
Explanation of Solution
From part (b), the
From part (e), the
Write the formula to calculate the resultant force acting on the particle
Here,
Substitute
Conclusion:
Therefore, the resultant
(h)
The magnitude and direction of the resultant electric force acting on
Answer to Problem 12P
The magnitude and direction of the resultant electric force acting on
Explanation of Solution
From part (g), the resultant
From part (f), the resultant
Write the formula to calculate the resultant force acting on the particle
Here,
Substitute
Write the formula to calculate the direction of the resultant force acting on
Here,
Substitute
The direction of the resultant force is counterclockwise from
Conclusion:
Therefore, the magnitude and direction of the resultant electric force acting on
Want to see more full solutions like this?
Chapter 22 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Please help me with this physics problemarrow_forwardIn a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forward
- No chatgpt pls will upvote Alreadyarrow_forwardTwo objects get pushed by the same magnitude of force. One object is 10x more massive. How does the rate of change of momentum for the more massive object compare with the less massive one? Please be able to explain why in terms of a quantitative statement found in the chapter.arrow_forwardA box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning