Concept explainers
(a)
The tube length if heat exchanger has one-shell pass and one tube pass.
(a)

Explanation of Solution
Given:
The mass flow rate of hot steam
The mass flow rate of water
The heat capacity of water is
The heat capacity of hot stream is
The hot stream inlet temperature
The hot stream exit temperature
The water inlet temperature
The average heat transfer coefficient
The dynamic viscosity of stream
The density of stream
Calculation:
Calculate the rate of heat transfer.
Calculate the outlet temperature of cold water using energy balance.
Calculate the temperature at the ends.
Calculate the LMTD (log mean temperature difference).
Calculate the Reynolds number.
The value of Reynolds number is greater than
Calculate the value of Prandtl number.
Calculate the Nusselt number for turbulent flow.
Calculate the heat transfer coefficient on inner surface.
Calculate the overall heat transfer coefficient.
Calculate the tube length.
Thus, the tube length if heat exchanger has one-shell pass and one tube pass is
(b)
The tube length if heat exchanger has one-shell pass and four tube pass.
(b)

Explanation of Solution
Calculation:
Calculate the number of tubes per pass.
Calculate the Reynolds number.
The value of Reynolds number is greater than
Calculate the Nusselt number for turbulent flow.
Calculate the heat transfer coefficient on inner surface.
Calculate the overall heat transfer coefficient.
Calculate the two temperature ratio.
Refer figure-22-19, “Correction factor F charts for common shell-and-tube and cross-flow heat exchangers” in book corresponding to calculated value of
Calculate the tube length.
Thus, the tube length if heat exchanger has one-shell pass and four tube pass is
Want to see more full solutions like this?
Chapter 22 Solutions
Fundamentals Of Thermal-fluid Sciences In Si Units
- This is a tilt and rotation question. Here are notes attached for reference.arrow_forwardThe crate of mass m is supported on a cart of negligible mass as shown in (Figure 1). Determine the maximum force P that can be applied a distance d from the cart bottom without causing the crate to tip on the cart. Express your answer in terms of some, all, or none of the variables b, d, h, m, and the acceleration due to gravity g. P B harrow_forwardConsider a pair of pipes running in parallel, through which 1200 GPM flows, which have thefollowing features:Pipe 1: Carbon Steel, Schedule 40, 8" Diameter, 1200 GPM, Water at 44°F, Fittings:2 tees, 2 butterfly valves, 2 pressure gauges with their respective ball valves, 1 valvemotorized balloon. All valves are completely open. Length of the pipe is 6 feet. Pipe 2: consists of a carbon steel bypass pipe, schedule 40, diameter of 4",with the following accessories: 2 elbows long radius of 90° and an open globe valve.The length of the pipe is 10 feet. a) Determine the flow rate in each pipe.b) The pressure drop.arrow_forward
- 1-ft3 of air is contained in a spring-loaded piston-cylinder device. The spring constant is 6 lbf/in, and thepiston diameter is 12 in. When no force is exerted by the spring on the piston, the state of the air is 250 psiaand 450◦F. This device is now cooled until the volume is one-third its original size. Determine the changein the specific internal energy and enthalpy of the air.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forward
- I need help with a MATLAB code. For question b.6 I have the MATLAB code shown below. How do I edit the code to answer question b.7. Please make sure the plots are reasonable. clc; clear all; % Constants mu = 398600; % Earth gravitational parameter, km^3/s^2 % Initial chief and deputy positions and velocities in ECI frame % Assume circular orbits in equatorial plane for simplicity a_c = 10000; % km a_d = 11500; % km r_c0 = [a_c; 0; 0]; v_c0 = [0; sqrt(mu/a_c); 0]; r_d0 = [a_d; 0; 0]; v_d0 = [0; sqrt(mu/a_d); 0]; % Initial relative state delta_r0 = r_d0 - r_c0; delta_v0 = v_d0 - v_c0; x0 = [delta_r0; delta_v0]; % 6x1 initial relative state % Time span tspan = [0 3600]; % 1 hour in seconds % Damping cases cases = struct( ... 'name', {'Critically damped', 'Under-damped', 'Over-damped'}, ... 'Kr', {eye(3)*2.5e-3, eye(3)*0.001, eye(3)*0.01}, ... 'P', {eye(3)*0.01, eye(3)*0.0006, eye(3)*0.02} ... ); % Simulate each case for i = 1:length(cases) Kr = cases(i).Kr; P =…arrow_forwardJust do Questions 7, 9, 11. Here are notes attached for reference.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forward
- Thermodynamics: Mass and Energy Analysis Of Control Volumes A spring-loaded piston-cylinder device contains 1.5 kg of carbon dioxide. This system is heated from 200kPa and 25◦C to 1200 kPa and 300◦C. Determine the total heat transfer to and work produced by this system.arrow_forwardCan you help with a code in MATLAB?arrow_forwardI need help writing a code in MATLAB. Please help me with question b.6arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





