Concept explainers
(a)
Interpretation:
Lone pair has to be identified, lone pairs are delocalized or not have to be indicated and also geometry has to be predicted.
Concept Introduction:
The unshared electrons of an atom that does not involve in bonding are called lone pair.
Resonance is an electron displacement effect for stabilizing a molecule through delocalization of bonding electrons in the pi orbital.
Delocalized electrons stabilize a compound. The extra stability gains from having delocalized electrons are called resonance stabilization or resonance energy.
The steric number is the combination of both number of
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom is sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral.
If the steric number is 3, the central atom is sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar.
If the steric number is 2, the central atom is sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
trigonal pyramidal(if one lone pair of electron is present).
bent geometry (if two lone pair of electrons are present).
(b)
Interpretation:
Lone pair has to be identified, lone pairs are delocalized or not have to be indicated and also geometry has to be predicted.
Concept Introduction:
The unshared electrons of an atom that does not involve in bonding are called lone pair.
Resonance is an electron displacement effect for stabilizing a molecule through delocalization of bonding electrons in the pi orbital.
Delocalized electrons stabilize a compound. The extra stability gains from having delocalized electrons are called resonance stabilization or resonance energy.
The steric number is the combination of both number of
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom is sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral.
If the steric number is 3, the central atom is sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar.
If the steric number is 2, the central atom is sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
trigonal pyramidal(if one lone pair of electron is present).
bent geometry (if two lone pair of electrons are present).
(c)
Interpretation:
Lone pair has to be identified, lone pairs are delocalized or not have to be indicated and also geometry has to be predicted.
Concept Introduction:
The unshared electrons of an atom that does not involve in bonding are called lone pair.
Resonance is an electron displacement effect for stabilizing a molecule through delocalization of bonding electrons in the pi orbital.
Delocalized electrons stabilize a compound. The extra stability gains from having delocalized electrons are called resonance stabilization or resonance energy.
The steric number is the combination of both number of
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom is sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral.
If the steric number is 3, the central atom is sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar.
If the steric number is 2, the central atom is sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
trigonal pyramidal(if one lone pair of electron is present).
bent geometry (if two lone pair of electrons are present).
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 2 Solutions
ORGANIC CHEMISTRY 1 TERM ACCESS
- Nonearrow_forwardNonearrow_forwardman Campus Depa (a) Draw the three products (constitutional isomers) obtained when 2-methyl-3-hexene reacts with water and a trace of H2SO4. Hint: one product forms as the result of a 1,2-hydride shift. (1.5 pts) This is the acid-catalyzed alkene hydration reaction.arrow_forward
- (6 pts - 2 pts each part) Although we focused our discussion on hydrogen light emission, all elements have distinctive emission spectra. Sodium (Na) is famous for its spectrum being dominated by two yellow emission lines at 589.0 and 589.6 nm, respectively. These lines result from electrons relaxing to the 3s subshell. a. What is the photon energy (in J) for one of these emission lines? Show your work. b. To what electronic transition in hydrogen is this photon energy closest to? Justify your answer-you shouldn't need to do numerical calculations. c. Consider the 3s subshell energy for Na - use 0 eV as the reference point for n=∞. What is the energy of the subshell that the electron relaxes from? Choose the same emission line that you did for part (a) and show your work.arrow_forwardNonearrow_forward(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception to the general ionization energy (IE) trend. For the two elements involved, answer the following questions. Be sure to cite sources for all physical data that you use. a. (2 pts) Identify the two elements and write their electronic configurations. b. (2 pts) Based on their configurations, propose a reason for the IE trend exception. c. (5 pts) Calculate effective nuclear charges for the last electron in each element and the Allred-Rochow electronegativity values for the two elements. Can any of these values explain the IE trend exception? Explain how (not) - include a description of how IE relates to electronegativity.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)