(a)
Interpretation:
To draw all resonance structures of enolate ion formed from the given set of compounds and predict whether a substantial amount of starting
Concept introduction:
Keto-enol isomerization is possible when a keto group present in the compound has a movable hydrogen atom in the next carbon attached to the carbonyl group. This occurs generally in almost all keto compounds where a chemical equilibria is present between the keto and enol form of the compound. Conversion of keto to its enol form is known as keto-enol tautomerisation. This conversion occurs in presence of acid or base. The ion fomed after the deprotonation using base at the
Symmetrical ketone=Symmetrical
Unsymmetrical Ketone=Unymmetrical
To Draw : The resonance structure of enolate ion and predict whether substantial amount of starting ketone will be present after equilibrium if sodium ethoxide is used as base.
(b)
Interpretation:
To draw all resonance structures of enolate ion formed from the given set of compounds and predict whether a substantial amount of starting ketone will be present with enolate after equilibrium when treated with sodium ethoxide.
Concept introduction:
Keto-enol isomerization is possible when a keto group present in the compound has a movable hydrogen atom in the next carbon attached to the carbonyl group. This occurs generally in almost all keto compounds where a chemical equilibria is present between the keto and enol form of the compound. Conversion of keto to its enol form is known as keto-enol tautomerisation. This conversion occurs in presence of acid or base. The ion fomed after the deprotonation using base at the
Symmetrical ketone=Symmetrical
Unsymmetrical Ketone=Unymmetrical
To Draw : The resonance structure of enolate ion and predict whether substantial amount of starting ketone will be present after equilibrium if sodium ethoxide is used as base.
(c)
Interpretation:
To draw all resonance structures of enolate ion formed from the given set of compounds and predict whether a substantial amount of starting ketone will be present with enolate after equilibrium when treated with sodium ethoxide.
Concept introduction:
Keto-enol isomerization is possible when a keto group present in the compound has a movable hydrogen atom in the next carbon attached to the carbonyl group. This occurs generally in almost all keto compounds where a chemical equilibria is present between the keto and enol form of the compound. Conversion of keto to its enol form is known as keto-enol tautomerisation. This conversion occurs in presence of acid or base. The ion fomed after the deprotonation using base at the
Symmetrical ketone=Symmetrical
Unsymmetrical Ketone=Unymmetrical
To Draw : The resonance structure of enolate ion and predict whether substantial amount of starting ketone will be present after equilibrium if sodium ethoxide is used as base.
(d)
Interpretation:
To draw all resonance structures of enolate ion formed from the given set of compounds and predict whether a substantial amount of starting ketone will be present with enolate after equilibrium when treated with sodium ethoxide.
Concept introduction:
Keto-enol isomerization is possible when a keto group present in the compound has a movable hydrogen atom in the next carbon attached to the carbonyl group. This occurs generally in almost all keto compounds where a chemical equilibria is present between the keto and enol form of the compound. Conversion of keto to its enol form is known as keto-enol tautomerisation. This conversion occurs in presence of acid or base. The ion fomed after the deprotonation using base at the
Symmetrical ketone=Symmetrical
Unsymmetrical Ketone=Unymmetrical
To Draw : The resonance structure of enolate ion and predict whether substantial amount of starting ketone will be present after equilibrium if sodium ethoxide is used as base.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 21 Solutions
ORGANIC CHEMISTRY-PRINT MULTI TERM
- 2. 200 LOD For an unknown compound with a molecular ion of 101 m/z: a. Use the molecular ion to propose at least two molecular formulas. (show your work) b. What is the DU for each of your possible formulas? (show your work) C. Solve the structure and assign each of the following spectra. 8 6 4 2 (ppm) 150 100 50 ō (ppm) 4000 3000 2000 1500 1000 500 HAVENUMBERI-11arrow_forwardComplete the spectroscopy with structurearrow_forwardComplete the spectroscopy with structurearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)